f-x-arctan-2sinx-developp-f-at-fourier-serie- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 145748 by mathmax by abdo last updated on 07/Jul/21 f(x)=arctan(2sinx)developpfatfourierserie Answered by mathmax by abdo last updated on 09/Jul/21 wehavef′(x)=2cosx1+4sin2x=2cosx1+4.1−cos(2x)2=2cosx1+2−2cos(2x)=2cosx3−2cos(2x)=2eix+e−ix23−2e2ix+e−2ix2=eix+e−ix3−e2ix−e−2ix=eix=zz+z−13−z2−z−2=z2(z+z−1)3z2−z4−1=z3+z−z4+3z2−1=−z3+zz4−3z2+1z4−3z2+1=0⇒u2−3u+1=0(u=z2)Δ=9−4=5⇒u1=3+52andu2=3−52⇒f′(x)=−z3+z(z2−u1)(z2−u2)=(z3+z)(1z2−u1−1z2−u2)×15=15(z(z2−u1)+u1z+zz2−u1−z(z2−u2)+u2z+zz2−u2)=15{(1+u1)zz2−u1−(1+u2)zz2−u2}∣u1z2∣−1=3+52−1>0⇒∣u1z2∣>1∣u2z2∣−1=3−52−1<0⇒∣u2z2∣<1⇒f′(x)=15{−1+u1u1×z1−z2u1−1+u2z×11−u2z2}=−(1+u1)z5u1∑n=0∞z2nu1n−(1+u2)z5∑n=0∞u2nz2n=−1+u1u15∑n=0∞z2n+1u1n−(1+u2)5∑n=0∞u2nz2n+1=−1+u1u15∑n=0∞u1−nei(2n+1)x−1+u25∑n=0∞u2ne−i(2n+1)x⇒f(x)=−1+u1u15(i(2n+1))∑n=0∞u1−nei(2n+1)x+1+u25i(2n+1)∑n=0∞u2−ne−i(2n+1)x+K…becontinued…. Commented by mathmax by abdo last updated on 09/Jul/21 tosimplifycalculuswecanusethisdecompositionf′(x)=2cosx3−2cos(2x)=2cosx3−2(2cos2x−1)=2cosx3−4cos2x+2=−2cosx4cos2x−5=−2cosx(2cosx−5)(2cosx+5)=125(12cosx−5−12cosx+5)=125(u(x)−v(x))u(x)=12cosx−5=1eix+e−ix−5=eix=z1z+z−1−5=zz2+1−5z=zz2−5z+1Δ=5−4=1⇒z1=5+12andz2=5−12u(x)=z(z−z1)(z−z2)=z(1z−z1−1z−z2)=zz−z1−zz−z2∣zz1∣−1=25+1−1=2−5−1(…)<0⇒∣zz1∣<1∣zz2∣−1=25−1−1=2−5+15−1=3−5(..)>0⇒∣zz2∣>1⇒u(x)=−zz1(1−zz1)−11−z2z=−zz1∑n=0∞znz1n−∑n=0∞z2nznz1z2=1⇒z2n=1z1n⇒u(x)=−zz1∑n=0∞znz1n−∑n=0∞1z1nzn=−∑n=0∞(5+12)−n−1ei(n+1)x−∑n=0∞(5+12)−ne−inx=−∑n=0∞(5+12)−n−1(cos(n+1)x+isin(n+1)x)−∑n=0∞(5+12)−n(cos(nx)−isin(nx))u(x)real⇒u(x)=−∑n=0∞(5+12)−(n+1)cos(n+1)x−∑n=0∞(5+12)−ncos(nx)=−∑n=1∞(5+12)−ncos(nx)−∑n=0∞(5+12)−ncos(nx)=−1−2∑n=1∞(5+12)−ncos(nx)…becontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-145751Next Next post: Question-14682 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.