Question Number 178743 by mathlove last updated on 21/Oct/22
$${f}\left({x}\right)={arctan}\left(\sqrt{\frac{{x}−\mathrm{1}}{\mathrm{2}{x}+\mathrm{1}}}\right)\:\: \\ $$$${f}^{−\mathrm{1}} \left({x}\right)=? \\ $$
Commented by cortano1 last updated on 21/Oct/22
$$\:\mathrm{tan}\:\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\frac{\mathrm{x}−\mathrm{1}}{\mathrm{2x}+\mathrm{1}}} \\ $$$$\:\mathrm{tan}\:^{\mathrm{2}} \mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{x}−\mathrm{1}}{\mathrm{2x}+\mathrm{1}}\: \\ $$$$\:\mathrm{2x}\:\mathrm{tan}\:^{\mathrm{2}} \mathrm{f}\left(\mathrm{x}\right)−\mathrm{x}=−\mathrm{tan}\:^{\mathrm{2}} \mathrm{f}\left(\mathrm{x}\right)−\mathrm{1} \\ $$$$\:\mathrm{x}=\frac{−\mathrm{tan}\:^{\mathrm{2}} \mathrm{f}\left(\mathrm{x}\right)−\mathrm{1}}{\mathrm{2tan}\:^{\mathrm{2}} \mathrm{f}\left(\mathrm{x}\right)−\mathrm{1}} \\ $$$$\:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{y}\right)=\frac{−\mathrm{tan}\:^{\mathrm{2}} \mathrm{y}−\mathrm{1}}{\mathrm{2tan}\:^{\mathrm{2}} \mathrm{y}−\mathrm{1}} \\ $$$$\:\therefore\:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)=−\frac{\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}+\mathrm{1}}{\mathrm{2tan}\:^{\mathrm{2}} \mathrm{x}−\mathrm{1}}\: \\ $$
Commented by mathlove last updated on 21/Oct/22
$${thanks}\:{sir} \\ $$