Menu Close

f-x-arctg-1-x-2-x-1-and-f-1-f-2-f-21-find-tg-




Question Number 156807 by amin96 last updated on 15/Oct/21
f(x)=arctg(1/(x^2 +x+1))  and α=f(1)+f(2)+…+f(21)  find  tg(α)=?
f(x)=arctg1x2+x+1andα=f(1)+f(2)++f(21)findtg(α)=?
Commented by amin96 last updated on 15/Oct/21
A)(6/(11))    B)(7/(11))   C)((11)/(21))    D)(1/(21))    E)((21)/(23))
A)611B)711C)1121D)121E)2123
Commented by amin96 last updated on 15/Oct/21
nope sir
nopesir
Commented by ghimisi last updated on 15/Oct/21
arctg(1/(x^2 +x+1))=arctg(1/x)−arctg(1/(x+1))
arctg1x2+x+1=arctg1xarctg1x+1
Answered by gsk2684 last updated on 16/Oct/21
f(x)=tan^(−1) (1/(1+(x+1)x))=tan^(−1) (((x+1)−x)/(1+(x+1)x))=tan^(−1) (x+1)−tan^(−1) x  α=f(1)+f(2)+f(3)+....+f(21)  α=(tan^(−1) 2−tan^(−1) 1)      +(tan^(−1) 3−tan^(−1) 2)      +(tan^(−1) 4−tan^(−1) 3)      +...      +(tan^(−1) 22−tan^(−1) 21)  α=tan^(−1) 22−tan^(−1) 1=tan^(−1) ((22−1)/(1+22×1))=tan^(−1) ((21)/(23))
f(x)=tan111+(x+1)x=tan1(x+1)x1+(x+1)x=tan1(x+1)tan1xα=f(1)+f(2)+f(3)+.+f(21)α=(tan12tan11)+(tan13tan12)+(tan14tan13)++(tan122tan121)α=tan122tan11=tan12211+22×1=tan12123

Leave a Reply

Your email address will not be published. Required fields are marked *