Menu Close

f-x-ax-2-bx-1-x-0-cx-2-d-0-lt-x-1-2-bx-d-1-2-lt-x-1-f-x-is-continuous-on-1-1-prove-d-0-c-2b-




Question Number 87799 by M±th+et£s last updated on 06/Apr/20
f(x)= { ((ax^2 +bx      −1≤x≤0)),((cx^2 +d              0<x≤(1/2))),((bx+d               (1/2)<x≤1)) :}  f(x) is continuous on[−1,1]  prove d=0                c=2b
f(x)={ax2+bx1x0cx2+d0<x12bx+d12<x1f(x)iscontinuouson[1,1]proved=0c=2b
Commented by john santu last updated on 06/Apr/20
lim_(x→0^− )  f(x)=lim_(x→0^+ )  f(x)  lim_(x→0^− )  (ax^2 +bx) lim_(x→0^+ )  (cx^2 +d)  0 = d   lim_(x→0.5^− )  (cx^2 +d) = lim_(x→0.5^+ )  (bx+d)  (1/4)c = (1/2)b ⇒c = 2b
limx0f(x)=limx0+f(x)limx0(ax2+bx)limx0+(cx2+d)0=dlimx0.5(cx2+d)=limx0.5+(bx+d)14c=12bc=2b
Commented by M±th+et£s last updated on 06/Apr/20
god bless you sir
godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *