Menu Close

f-x-ax-2-bx-c-f-x-1-f-x-f-x-1-x-2-1-f-2-




Question Number 192083 by sciencestudentW last updated on 07/May/23
f(x)=ax^2 +bx+c  f(x−1)+f(x)+f(x+1)=x^2 +1  f(2)=?
$${f}\left({x}\right)={ax}^{\mathrm{2}} +{bx}+{c} \\ $$$${f}\left({x}−\mathrm{1}\right)+{f}\left({x}\right)+{f}\left({x}+\mathrm{1}\right)={x}^{\mathrm{2}} +\mathrm{1} \\ $$$${f}\left(\mathrm{2}\right)=? \\ $$
Answered by AST last updated on 07/May/23
Line 2  ⇒a((x−1)^2 +x^2 +(x+1)^2 )+b(x−1+x+x+1)+3c  =x^2 +1⇒a(3x^2 +2)+b(3x)+3c=x^2 +1  ⇒3ax^2 +3bx+2a+3c=x^2 +1  ⇒3a=1⇒a=(1/3);b=0;2a+3c=1⇒c=(1/9)  ⇒f(x)=(1/3)x^2 +(1/9)=((3x^2 +1)/9)  ⇒f(2)=((13)/9)
$${Line}\:\mathrm{2} \\ $$$$\Rightarrow{a}\left(\left({x}−\mathrm{1}\right)^{\mathrm{2}} +{x}^{\mathrm{2}} +\left({x}+\mathrm{1}\right)^{\mathrm{2}} \right)+{b}\left({x}−\mathrm{1}+{x}+{x}+\mathrm{1}\right)+\mathrm{3}{c} \\ $$$$={x}^{\mathrm{2}} +\mathrm{1}\Rightarrow{a}\left(\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}\right)+{b}\left(\mathrm{3}{x}\right)+\mathrm{3}{c}={x}^{\mathrm{2}} +\mathrm{1} \\ $$$$\Rightarrow\mathrm{3}{ax}^{\mathrm{2}} +\mathrm{3}{bx}+\mathrm{2}{a}+\mathrm{3}{c}={x}^{\mathrm{2}} +\mathrm{1} \\ $$$$\Rightarrow\mathrm{3}{a}=\mathrm{1}\Rightarrow{a}=\frac{\mathrm{1}}{\mathrm{3}};{b}=\mathrm{0};\mathrm{2}{a}+\mathrm{3}{c}=\mathrm{1}\Rightarrow{c}=\frac{\mathrm{1}}{\mathrm{9}} \\ $$$$\Rightarrow{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{9}}=\frac{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}}{\mathrm{9}} \\ $$$$\Rightarrow{f}\left(\mathrm{2}\right)=\frac{\mathrm{13}}{\mathrm{9}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *