Menu Close

f-x-e-3x-e-3x-2-1-determine-f-1-x-2-calculate-0-1-x-f-x-dx-and-0-1-f-x-dx-3-calculate-f-1-x-dx-4-calculate-u-n-0-pi-f-x-cos-nx-dx-and-v-n-0-




Question Number 42704 by maxmathsup by imad last updated on 01/Sep/18
f(x)  =  ((e^(3x)  +e^(−3x) )/2)  1) determine f^(−1) (x)  2) calculate  ∫_0 ^1    x f(x)dx    and ∫_0 ^1 f(x)dx  3)  calculate   ∫  f^(−1) (x)dx  4) calculate u_n = ∫_0 ^π   f(x)cos(nx)dx and v_n = ∫_0 ^n   f(x)sin(nx)dx  find nature of Σ (v_n /u_n )  ∫_0 ^1  xf(x) dx =(1/2) ∫_0 ^1  x e^(3x) dx +(1/2) ∫_0 ^1  x e^(−3x) dx   (by parts)  =(1/2){  [(x/3)e^(3x) ]_0 ^1  −(1/3)∫_0 ^1   e^(3x) dx  +[−(x/3)e^(−3x) ]_0 ^1  +(1/3)∫_0 ^1   e^(−3x) dx}  =(1/2){(e^3 /3) −(1/9)(e^3 −1) −(e^(−3) /3) −(1/9)(e^(−3) −1)}
f(x)=e3x+e3x21)determinef1(x)2)calculate01xf(x)dxand01f(x)dx3)calculatef1(x)dx4)calculateun=0πf(x)cos(nx)dxandvn=0nf(x)sin(nx)dxfindnatureofΣvnun01xf(x)dx=1201xe3xdx+1201xe3xdx(byparts)=12{[x3e3x]011301e3xdx+[x3e3x]01+1301e3xdx}=12{e3319(e31)e3319(e31)}
Commented by maxmathsup by imad last updated on 01/Sep/18
1) f(x)=ch(3x) =y ⇔ 3x =argch(y) ⇔x =(1/3)argch(y) =(1/3)ln(y+(√(y^2 −1))) ⇒  f^(−1) (x) =(1/3)ln(y+(√(y^2 −1)))  2)∫_0 ^1 f(x)dx = (1/2)∫_0 ^1 ( e^(3x)  +e^(−3x) )dx =(1/2)[(1/3)e^(3x) −(1/3)e^(−3x) ]_0 ^1   =(1/6){e^3  −e^(−3) }
1)f(x)=ch(3x)=y3x=argch(y)x=13argch(y)=13ln(y+y21)f1(x)=13ln(y+y21)2)01f(x)dx=1201(e3x+e3x)dx=12[13e3x13e3x]01=16{e3e3}
Commented by maxmathsup by imad last updated on 01/Sep/18
3) let I  = ∫  f^(−1) (x)dx   let  f^(−1) (x) =t ⇒ x =f(t) ⇒  I = ∫  t f^′ (t)dt = tf(t) −∫  f(t)dt   and   ∫ f(t)dt =∫   ((e^(3t)  +e^(−3t) )/2) dt =(1/6) e^(3t) −(1/6) e^(−3t)   +c ⇒  I  = t f(t)−(1/6) e^(3t)  +(1/6) e^(−3t)    but t =f^(−1) (x) =(1/3)ln(x+(√(x^2 −1))) ⇒  I  =(x/3)ln(x+(√(x^2 −1))) −(1/6)(x+(√(x^2 −1)))  +(1/(6(x+(√(x^2 −1))))) +c
3)letI=f1(x)dxletf1(x)=tx=f(t)I=tf(t)dt=tf(t)f(t)dtandf(t)dt=e3t+e3t2dt=16e3t16e3t+cI=tf(t)16e3t+16e3tbutt=f1(x)=13ln(x+x21)I=x3ln(x+x21)16(x+x21)+16(x+x21)+c
Commented by maxmathsup by imad last updated on 02/Sep/18
4)  we have u_n = ∫_0 ^π  f(x)cos(nx)dx =(1/2) ∫_0 ^π   (e^(3x)  +e^(−3x) )cos(nx)dx ⇒  2u_n = Re( ∫_0 ^π   e^(inx) (e^(3x)  +e^(−3x) )dx) =Re( ∫_0 ^π  e^((3+in)x)  + e^((−3+in)x) )dx but  ∫_0 ^π  ( e^((3+in)x)  +e^((−3+in)x) )dx =[(1/(3+in)) e^((3+in)x)  +(1/(−3+in)) e^((−3+in)x) ]_0 ^π   =((e^(3π) (−1)^n )/(3+in)) +((e^(−3π) (−1)^n )/(−3 +in))  −(1/(3+in)) −(1/(−3+in))  =(((3−in) e^(3π) (−1)^n )/(9+n^2 )) + (((−3−in)e^(−3π) (−1)^n )/(9+n^2 )) −(1/(3+in)) +(1/(3−in))  =(((−1)^n )/(9+n^2 )) { 3 e^(3π)  −in e^(3π)  −3 e^(−3π)  −in e^(−3π) } +(1/(3−in)) −(1/(3+in))  =((3(−1)^n )/(9+n^2 )){ e^(3π)  −e^(−3π) } −((n(−1)^n )/(9+n^2 ))i {e^(3π)  +e^(−3π) }   +((2in)/(9+n^2 ))  ⇒ u_n = ((3(−1)^n (e^(3π)  −e^(−3π) ))/(9+n^2 ))    also we have v_n = Im(∫_0 ^π  e^((3+in)x)  +e^((−3+in)x) )dx)  ⇒v_n =((2n −n(−1)^n )/(9+n^2 )) .
4)wehaveun=0πf(x)cos(nx)dx=120π(e3x+e3x)cos(nx)dx2un=Re(0πeinx(e3x+e3x)dx)=Re(0πe(3+in)x+e(3+in)x)dxbut0π(e(3+in)x+e(3+in)x)dx=[13+ine(3+in)x+13+ine(3+in)x]0π=e3π(1)n3+in+e3π(1)n3+in13+in13+in=(3in)e3π(1)n9+n2+(3in)e3π(1)n9+n213+in+13in=(1)n9+n2{3e3πine3π3e3πine3π}+13in13+in=3(1)n9+n2{e3πe3π}n(1)n9+n2i{e3π+e3π}+2in9+n2un=3(1)n(e3πe3π)9+n2alsowehavevn=Im(0πe(3+in)x+e(3+in)x)dx)vn=2nn(1)n9+n2.
Commented by maxmathsup by imad last updated on 02/Sep/18
u_n =((3(−1)^n (e^(3π)  −e^(−3π) ))/(2(9+n^2 )))   and v_n = ((2n−n(−1)^n { e^(3π)  +e^(−3π) })/(2(9+n^2 )))
un=3(1)n(e3πe3π)2(9+n2)andvn=2nn(1)n{e3π+e3π}2(9+n2)un=3(1)n(e3πe3π)2(9+n2)andvn=2nn(1)n{e3π+e3π}2(9+n2)

Leave a Reply

Your email address will not be published. Required fields are marked *