Menu Close

f-x-e-x-2-0-lt-x-lt-e-x-4-lt-x-lt-0-Find-geometric-mean-of-f-x-




Question Number 167054 by shikaridwan last updated on 05/Mar/22
f(x)= { ((e^(−x^2 )   0<x<∞)),((e^(−x^4 )  −∞<x<0    )) :}     Find geometric mean of f(x)
f(x)={ex20<x<ex4<x<0Findgeometricmeanoff(x)
Answered by aleks041103 last updated on 05/Mar/22
g=lim_(a→∞) lim_(Δx→0) ((Π_(i=0) ^(((2a)/(Δx))−1) f(−a+iΔx)))^(1/(2a/Δx))   ⇒ln(g)=lim_(a→∞) lim_(Δx→∞) ((Δx)/(2a))(Σ_(i=0) ^(((2a)/(Δx))−1) ln(f(−a+iΔx)))=  =lim_(a→∞) (1/(2a))∫_(−a) ^a ln(f(x))dx=ln(g)  now  ln(f(x))= { ((−x^2 , 0<x)),((−x^4 ,x<0)) :}  ⇒g=lim_(a→∞) ((−1)/(2a))(∫_(−a) ^0 x^4 dx+∫_0 ^a x^2 dx)=  =lim_(a→∞) ((−1)/(2a))((a^5 /5)+(a^3 /3))→−∞  ⇒ln(g)→−∞  ⇒g=0
g=limalimΔx02aΔx1i=0f(a+iΔx)2a/Δxln(g)=limalimΔxΔx2a(2aΔx1i=0ln(f(a+iΔx)))==lima12aaaln(f(x))dx=ln(g)nowln(f(x))={x2,0<xx4,x<0g=lima12a(0ax4dx+0ax2dx)==lima12a(a55+a33)ln(g)g=0

Leave a Reply

Your email address will not be published. Required fields are marked *