f-x-e-x-arctan-3-x-1-find-f-n-3-2-give-taylor-developpement-for-f-at-x-0-3-3-find-0-f-x-dx- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 145515 by mathmax by abdo last updated on 05/Jul/21 f(x)=e−xarctan(3x)1)findf(n)(3)2)givetaylordeveloppementforfatx0=33)find∫0∞f(x)dx Answered by mathmax by abdo last updated on 06/Jul/21 1)f(x)=e−xarctan(3x)⇒f(n)(x)=∑k=0nCnk(arctan(3x))(k)(e−x)(n−k)=arctan(3x)(−1)ne−x+∑k=1n(−1)n−kCnk(arctan(3x))(k)wehave(arctan(3x))(1)=−3x2(1+9x2)=−3x2+9⇒(arctan(3x))(k)=−3(1x2+9)(k−1)=−3(1(x−3i)(x+3i))(k−1)=−12i(1x−3i−1x+3i)(k−1)=−12i((−1)k−1(k−1)!(x−3i)k−(−1)k−1(k−1)!(x+3i)k)=(−1)k(k−1)!2i{(x+3i)k−(x−3i)k(x2+9)k}⇒f(n)(x)=(−1)ne−xarctan(3x)+∑k=1n(−1)n−kCnk(−1)k(k−1)!2i(x2+9)k{(x+3i)k−(x−3i)k}⇒f(n)(3)=π4(−1)ne−x+12i∑k=1n(−1)nCnk(k−1)!18k{3k((1+i)k−(1−i)k}=π4(−1)ne−x+∑k=1n(−1)nCnk(k−1)!6k(2)ksin(kπ4) Commented by mathmax by abdo last updated on 06/Jul/21 2)f(x)=∑n=0∞f(n)(3)n!(x−3)nf(n)(3)isknown Commented by mathmax by abdo last updated on 06/Jul/21 f(n)(3)=π4(−1)ne−3+Σ(…..) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-79974Next Next post: Given-for-x-y-z-gt-0-2-x-3-y-5-z-Arrange-2x-3y-5z-in-increasing-order- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.