Menu Close

f-x-e-x-arctan-3-x-1-find-f-n-3-2-give-taylor-developpement-for-f-at-x-0-3-3-find-0-f-x-dx-




Question Number 145515 by mathmax by abdo last updated on 05/Jul/21
f(x)=e^(−x) arctan((3/x))  1)find f^((n)) (3)  2)give taylor developpement for f at x_0 =3  3)find ∫_0 ^∞ f(x)dx
f(x)=exarctan(3x)1)findf(n)(3)2)givetaylordeveloppementforfatx0=33)find0f(x)dx
Answered by mathmax by abdo last updated on 06/Jul/21
1)f(x)=e^(−x)  arctan((3/x)) ⇒f^((n)) (x)=Σ_(k=0) ^n  C_n ^k  (arctan((3/x)))^((k))  (e^(−x) )^((n−k))   =arctan((3/x))(−1)^n  e^(−x)  +Σ_(k=1) ^n  (−1)^(n−k)  C_n ^k  (arctan((3/x)))^((k))   we have  (arctan((3/x)))^((1))  =((−3)/(x^2 (1+(9/x^2 ))))=((−3)/(x^2  +9)) ⇒  (arctan((3/x)))^((k))  =−3((1/(x^2 +9)))^((k−1))   =−3((1/((x−3i)(x+3i))))^((k−1))  =−(1/(2i))((1/(x−3i))−(1/(x+3i)))^((k−1))   =−(1/(2i))((((−1)^(k−1) (k−1)!)/((x−3i)^k ))−(((−1)^(k−1) (k−1)!)/((x+3i)^k )))  =(((−1)^k (k−1)!)/(2i)){(((x+3i)^k −(x−3i)^k )/((x^2 +9)^k ))} ⇒  f^((n)) (x)=(−1)^n  e^(−x)  arctan((3/x))  +Σ_(k=1) ^n (−1)^(n−k)  C_n ^k  (((−1)^k (k−1)!)/(2i(x^2 +9)^k )){(x+3i)^k −(x−3i)^k } ⇒  f^((n)) (3)=(π/4)(−1)^n  e^(−x)   +(1/(2i))Σ_(k=1) ^(n ) (−1)^n  C_n ^k    (((k−1)!)/(18^k )){3^k ((1+i)^k −(1−i)^k }  =(π/4)(−1)^n  e^(−x)  +Σ_(k=1) ^n  (((−1)^n  C_n ^k  (k−1)!)/6^k )((√2))^k sin(((kπ)/4))
1)f(x)=exarctan(3x)f(n)(x)=k=0nCnk(arctan(3x))(k)(ex)(nk)=arctan(3x)(1)nex+k=1n(1)nkCnk(arctan(3x))(k)wehave(arctan(3x))(1)=3x2(1+9x2)=3x2+9(arctan(3x))(k)=3(1x2+9)(k1)=3(1(x3i)(x+3i))(k1)=12i(1x3i1x+3i)(k1)=12i((1)k1(k1)!(x3i)k(1)k1(k1)!(x+3i)k)=(1)k(k1)!2i{(x+3i)k(x3i)k(x2+9)k}f(n)(x)=(1)nexarctan(3x)+k=1n(1)nkCnk(1)k(k1)!2i(x2+9)k{(x+3i)k(x3i)k}f(n)(3)=π4(1)nex+12ik=1n(1)nCnk(k1)!18k{3k((1+i)k(1i)k}=π4(1)nex+k=1n(1)nCnk(k1)!6k(2)ksin(kπ4)
Commented by mathmax by abdo last updated on 06/Jul/21
2)f(x)=Σ_(n=0) ^∞  ((f^((n)) (3))/(n!))(x−3)^n   f^((n)) (3)is known
2)f(x)=n=0f(n)(3)n!(x3)nf(n)(3)isknown
Commented by mathmax by abdo last updated on 06/Jul/21
f^((n)) (3)=(π/4)(−1)^n  e^(−3)  +Σ(.....)
f(n)(3)=π4(1)ne3+Σ(..)

Leave a Reply

Your email address will not be published. Required fields are marked *