Menu Close

f-x-e-x-g-x-x-2-f-g-x-f-x-x-f-g-x-




Question Number 47590 by malwaan last updated on 12/Nov/18
f(x)=e^x    g(x)=x^2   (f+g)(x)=?  (f×x)(x)=?  (f/g)(x)=?
$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{e}^{\mathrm{x}} \: \\ $$$$\mathrm{g}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{2}} \\ $$$$\left(\mathrm{f}+\mathrm{g}\right)\left(\mathrm{x}\right)=? \\ $$$$\left(\mathrm{f}×\mathrm{x}\right)\left(\mathrm{x}\right)=? \\ $$$$\left(\mathrm{f}/\mathrm{g}\right)\left(\mathrm{x}\right)=? \\ $$
Commented by malwaan last updated on 12/Nov/18
plz now
$$\mathrm{plz}\:\mathrm{now} \\ $$
Answered by Joel578 last updated on 12/Nov/18
(f + g)(x) = e^x  + x^2   (f ×g)(x) = e^x  x^2   (f/g)(x) = (e^x /x^2 ) ,  x ≠ 0
$$\left({f}\:+\:{g}\right)\left({x}\right)\:=\:{e}^{{x}} \:+\:{x}^{\mathrm{2}} \\ $$$$\left({f}\:×{g}\right)\left({x}\right)\:=\:{e}^{{x}} \:{x}^{\mathrm{2}} \\ $$$$\left({f}/{g}\right)\left({x}\right)\:=\:\frac{{e}^{{x}} }{{x}^{\mathrm{2}} }\:,\:\:{x}\:\neq\:\mathrm{0} \\ $$
Commented by malwaan last updated on 12/Nov/18
thank you sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *