Question Number 171955 by infinityaction last updated on 22/Jun/22
$$\:\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)+\:\boldsymbol{{f}}\left(\frac{\mathrm{1}}{\mathrm{1}−\boldsymbol{{x}}}\right)\:=\:\mathrm{1}+\frac{\mathrm{1}}{\boldsymbol{{x}}\left(\mathrm{1}−\boldsymbol{{x}}\right)} \\ $$$$\:\:\:\:\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\:=\:\:??\:\:\:\:\:\:\:\:\: \\ $$
Answered by thfchristopher last updated on 22/Jun/22
$$\mathrm{1}+\frac{\mathrm{1}}{{x}\left(\mathrm{1}−{x}\right)} \\ $$$$=\frac{{x}−{x}^{\mathrm{2}} +\mathrm{1}}{{x}\left(\mathrm{1}−{x}\right)} \\ $$$$=\frac{−\left(\mathrm{1}−{x}\right)^{\mathrm{2}} +\mathrm{2}−\mathrm{3}{x}}{{x}\left(\mathrm{1}−{x}\right)} \\ $$$$=\frac{\mathrm{2}−\mathrm{3}{x}}{{x}\left(\mathrm{1}−{x}\right)}−\frac{\mathrm{1}−{x}}{{x}} \\ $$$$=\frac{\mathrm{2}}{{x}}−\frac{\mathrm{1}}{\mathrm{1}−{x}}−\frac{\mathrm{1}−{x}}{{x}} \\ $$$$=\frac{{x}+\mathrm{1}}{{x}}−\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$$$\mathrm{Comparison}\:\mathrm{by}\:\mathrm{terms}, \\ $$$${f}\left({x}\right)=\mathrm{1}+\frac{\mathrm{1}}{{x}} \\ $$$${f}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}}\right)=\frac{−\mathrm{1}}{\mathrm{1}−{x}} \\ $$
Commented by infinityaction last updated on 22/Jun/22
$${i}\:{know}\:{solution}\:{of}\:{this}\:{question} \\ $$$${but}\:{your}\:{solution}\:{is}\:{wrong} \\ $$
Commented by infinityaction last updated on 22/Jun/22
$${i}\:{need}\:{any}\:{other}\:{way}\:{of}\:{this} \\ $$$${question} \\ $$
Commented by infinityaction last updated on 22/Jun/22
$$\:\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)+\:\boldsymbol{{f}}\left(\frac{\mathrm{1}}{\mathrm{1}−\boldsymbol{{x}}}\right)\:=\:\mathrm{1}+\frac{\mathrm{1}}{\boldsymbol{{x}}\left(\mathrm{1}−\boldsymbol{{x}}\right)} \\ $$$$\:\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)+\:\boldsymbol{{f}}\left(\frac{\mathrm{1}}{\mathrm{1}−\boldsymbol{{x}}}\right)\:=\:\:\mathrm{1}+\frac{\left(\mathrm{1}−{x}\right)+{x}}{{x}\left(\mathrm{1}−{x}\right)} \\ $$$$\:\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)+\:\boldsymbol{{f}}\left(\frac{\mathrm{1}}{\mathrm{1}−\boldsymbol{{x}}}\right)\:=\:\:\mathrm{1}+\frac{\mathrm{1}}{\boldsymbol{{x}}}+\:\frac{\mathrm{1}}{\mathrm{1}−\boldsymbol{{x}}} \\ $$$$\:\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)+\:\boldsymbol{{f}}\left(\frac{\mathrm{1}}{\mathrm{1}−\boldsymbol{{x}}}\right)\:=\:\:\left(\boldsymbol{{x}}+\frac{\mathrm{1}}{\boldsymbol{{x}}}\right)+\left(\mathrm{1}−\boldsymbol{{x}}+\:\frac{\mathrm{1}}{\mathrm{1}−\boldsymbol{{x}}}\right) \\ $$$$\:\:\:\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\:=\:\:\boldsymbol{{x}}+\frac{\mathrm{1}}{\boldsymbol{{x}}}\:\:\:\:\:\:\:\:\:\: \\ $$
Commented by thfchristopher last updated on 22/Jun/22
$$\mathrm{Haha},\:\mathrm{I}\:\mathrm{just}\:\mathrm{tried}\:\mathrm{on}\:\mathrm{error}.\:\mathrm{I}\:\mathrm{certainly}\:\mathrm{know} \\ $$$$\mathrm{my}\:\mathrm{answer}\:\mathrm{should}\:\mathrm{be}\:\mathrm{gussed}\:\mathrm{wrong}. \\ $$
Answered by mr W last updated on 22/Jun/22
$${f}\left({x}\right)+{f}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}}\right)=\mathrm{1}+\frac{\mathrm{1}}{{x}\left(\mathrm{1}−{x}\right)}\:\:\:…\left({i}\right) \\ $$$${replace}\:{x}\:{in}\:\left({i}\right)\:{with}\:\frac{\mathrm{1}}{\mathrm{1}−{x}}: \\ $$$${f}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}}\right)+{f}\left(\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}−{x}}}\right)=\mathrm{1}+\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{1}−{x}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}−{x}}\right)} \\ $$$${f}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}}\right)+{f}\left(\frac{{x}−\mathrm{1}}{{x}}\right)=\mathrm{1}−\frac{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }{{x}}\:\:\:…\left({ii}\right) \\ $$$${replace}\:{x}\:{in}\:\left({i}\right)\:{with}\:\frac{{x}−\mathrm{1}}{{x}}: \\ $$$${f}\left(\frac{{x}−\mathrm{1}}{{x}}\right)+{f}\left(\frac{\mathrm{1}}{\mathrm{1}−\frac{{x}−\mathrm{1}}{{x}}}\right)=\mathrm{1}+\frac{\mathrm{1}}{\frac{{x}−\mathrm{1}}{{x}}\left(\mathrm{1}−\frac{{x}−\mathrm{1}}{{x}}\right)} \\ $$$${f}\left(\frac{{x}−\mathrm{1}}{{x}}\right)+{f}\left({x}\right)=\mathrm{1}+\frac{{x}^{\mathrm{2}} }{{x}−\mathrm{1}}\:\:\:…\left({iii}\right) \\ $$$$\left({i}\right)+\left({iii}\right)−\left({ii}\right): \\ $$$$\mathrm{2}{f}\left({x}\right)=\mathrm{1}+\frac{\mathrm{1}}{{x}\left(\mathrm{1}−{x}\right)}+\mathrm{1}+\frac{{x}^{\mathrm{2}} }{{x}−\mathrm{1}}−\mathrm{1}+\frac{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }{{x}} \\ $$$$\mathrm{2}{f}\left({x}\right)=\frac{\mathrm{2}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}} \\ $$$$\Rightarrow{f}\left({x}\right)=\frac{\mathrm{1}+{x}^{\mathrm{2}} }{{x}} \\ $$
Commented by infinityaction last updated on 22/Jun/22
$${thank}\:{you}\:{sir} \\ $$
Commented by peter frank last updated on 22/Jun/22
$$\mathrm{thank}\:\mathrm{you} \\ $$
Commented by Tawa11 last updated on 25/Jun/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$