Menu Close

f-x-f-x-0-1-f-x-dx-f-0-1-f-x-




Question Number 163119 by tounghoungko last updated on 04/Jan/22
  f ′(x)= f(x)+∫_0 ^1 f(x)dx    f(0)=1 ⇒f(x)=?
f(x)=f(x)+01f(x)dxf(0)=1f(x)=?
Answered by mr W last updated on 04/Jan/22
y′=y+k with k=∫_0 ^1 f(x)dx  (dy/(y+k))=dx  ∫(dy/(y+k))=∫dx  ln (y+k)=x+C_1   y+k=Ce^x   y=f(x)=Ce^x −k  ∫_0 ^1 f(x)dx=[Ce^x −kx]_0 ^1 =C(e−1)−k=^! k  ⇒C=((2k)/(e−1))  f(x)=(((2e^x )/(e−1))−1)k  f(0)=((2/(e−1))−1)k=^! 1  ⇒k=((e−1)/(3−e))  ⇒f(x)=(((e−1)/(3−e)))(((2e^x )/(e−1))−1)
y=y+kwithk=01f(x)dxdyy+k=dxdyy+k=dxln(y+k)=x+C1y+k=Cexy=f(x)=Cexk01f(x)dx=[Cexkx]01=C(e1)k=!kC=2ke1f(x)=(2exe11)kf(0)=(2e11)k=!1k=e13ef(x)=(e13e)(2exe11)
Commented by Tawa11 last updated on 04/Jan/22
Great sir
Greatsir
Answered by tounghoungko last updated on 04/Jan/22

Leave a Reply

Your email address will not be published. Required fields are marked *