Menu Close

f-x-f-x-1-x-f-0-123-f-29-




Question Number 87352 by jagoll last updated on 04/Apr/20
f(x)= f(x+1) −x  f(0)= 123  f(29) =?
f(x)=f(x+1)xf(0)=123f(29)=?
Commented by jagoll last updated on 04/Apr/20
x=0 ⇒ 123=f(1)−0  f(1)=123  x=1 ⇒123=f(2)−1 ⇒f(2)=124  x=2⇒124=f(3)−2 ⇒f(3)= 126  x=3 ⇒126=f(4)−3 ⇒f(4)=129  it correct
x=0123=f(1)0f(1)=123x=1123=f(2)1f(2)=124x=2124=f(3)2f(3)=126x=3126=f(4)3f(4)=129itcorrect
Commented by jagoll last updated on 04/Apr/20
f(29)= 123 + ((29×28)/2)  = 123 + 406 = 529
f(29)=123+29×282=123+406=529
Commented by jagoll last updated on 04/Apr/20
mr W, my work it correct?
mrW,myworkitcorrect?
Commented by mr W last updated on 04/Apr/20
yes
yes
Commented by john santu last updated on 04/Apr/20
let f(x) = ax^2 +bx+c  f(x+1)= a(x+1)^2  +b(x+1)+c  f(x+1)−f(x) = x  2ax +a+b = x   2a = 1 ⇒ a =(1/2)  a+b = 0 ⇒ b =−(1/2)  f(x)= (1/2)x^2 −(1/2)x+c  f(0) = c = 123  ∴ f(x)=(1/2)x^2 −(1/2)x+123  then f(29) = (1/2)×29(29−1)+123  ((29×28)/2) + 123
letf(x)=ax2+bx+cf(x+1)=a(x+1)2+b(x+1)+cf(x+1)f(x)=x2ax+a+b=x2a=1a=12a+b=0b=12f(x)=12x212x+cf(0)=c=123f(x)=12x212x+123thenf(29)=12×29(291)+12329×282+123
Commented by jagoll last updated on 04/Apr/20
thank you sir
thankyousir
Answered by mr W last updated on 04/Apr/20
f(k+1)=f(k)+k  Σ_(k=0) ^n f(k+1)=Σ_(k=0) ^n f(k)+Σ_(k=0) ^n k  f(n+1)−f(0)+Σ_(k=0) ^n f(k)=Σ_(k=0) ^n f(k)+Σ_(k=0) ^n k  f(n+1)−f(0)=Σ_(k=0) ^n k=((n(n+1))/2)  f(n+1)=f(0)+((n(n+1))/2)  ⇒f(n)=f(0)+((n(n−1))/2)  ⇒f(29)=123+((29×28)/2)=529
f(k+1)=f(k)+knk=0f(k+1)=nk=0f(k)+nk=0kf(n+1)f(0)+nk=0f(k)=nk=0f(k)+nk=0kf(n+1)f(0)=nk=0k=n(n+1)2f(n+1)=f(0)+n(n+1)2f(n)=f(0)+n(n1)2f(29)=123+29×282=529
Commented by jagoll last updated on 04/Apr/20
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *