Menu Close

f-x-function-pair-and-0-decreases-in-the-range-f-x-f-3-solve-the-inequality-




Question Number 127322 by MathSh last updated on 28/Dec/20
f(x) function pair and (−∞;0]  decreases in the range  f(x)≥f(−3) solve the inequality
f(x)functionpairand(;0]decreasesintherangef(x)f(3)solvetheinequality
Answered by mindispower last updated on 28/Dec/20
]−∞,−3]∪[3,+∞[
],3][3,+[
Commented by MathSh last updated on 28/Dec/20
Solution sir pliz
Solutionsirpliz
Commented by mindispower last updated on 28/Dec/20
since f decrease  in ]−∞,0]⇒∀x≤−3,f(x)≥f(−3)  ⇒x∈]−∞,−3] is solution  f(x)=f(−x) f est une fonction paire  ⇒[3,∞] est aussi solution  ]−∞,−3]∪[3,∞[ sont solution  mais pas que car f peut etre constante sur   [−3,3] dans ce cas S=R   exemple f(x)= { ((x^2 ,x∈R−[−3,3])),((9 si x∈[−3,3])) :}   f(x)≥f(−3), les solution sont R tous entier
sincefdecreasein],0]x3,f(x)f(3)x],3]issolutionf(x)=f(x)festunefonctionpaire[3,]estaussisolution],3][3,[sontsolutionmaispasquecarfpeutetreconstantesur[3,3]danscecasS=Rexemplef(x)={x2,xR[3,3]9six[3,3]f(x)f(3),lessolutionsontRtousentier

Leave a Reply

Your email address will not be published. Required fields are marked *