Menu Close

f-x-g-x-and-g-x-f-x-for-all-real-x-andf-5-2-f-5-then-f-2-10-g-2-10-is-a-2-b-4-c-8-d-none-




Question Number 40052 by LXZ last updated on 15/Jul/18
f ′(x)=g(x) and  g ′(x)=−f(x) for  all real  x  andf(5)=2=f ′(5) then  f^2 (10)+g^2 (10) is  (a)   2     (b)   4     (c)    8     (d) none
f(x)=g(x)andg(x)=f(x)forallrealxandf(5)=2=f(5)thenf2(10)+g2(10)is(a)2(b)4(c)8(d)none
Answered by tanmay.chaudhury50@gmail.com last updated on 15/Jul/18
let f(x)=p    and  g(x)=  q  (dp/dx)=q   and  (dq/dx)=−p  (d^2 p/dx^2 )=(dq/dx)  (d^2 p/dx^2 )=−p   so (d^2 p/dx^2 )+p=0  let  p=Ae^(αx)   is a solution  (dp/dx)=Aαe^(αx)        (d^2 p/dx^2 )=Aα^2 e^(αx)   Aα^2 e^(αx) +Ae^(αx) =0  Ae^(αx) (α^2 +1)=0  α^2 +1=0    α=±i  so p=c_1 e^(ix) +c_2 e^(−ix)   (dp/dx)=c_1 ie^(ix) −c_2 ie^(−ix)   f(x)=c_1 e^(ix) +c_2 e^(−ix)   f(x)=c_1 (cosx+isinx)+c_2 (cosx−isinx)    =cosx(c_1 +c_2 )+sinx(ic_1 −ic_2 )  =Rsinθcosx+Rcosθsinx   {c_1 +c_2 =Rsinθ}  =Rsin(x+θ)    {ic_1 −ic_2 =Rcosθ}  so f(x)=Rsin(x+θ)  g(x)=Rcos(x+θ)  f(5)=Rsin(5+θ)=2  f′(x)=Rcos(x+θ)  f′(5)=Rcos(5+θ)=2  R^2 sin^2 (5+θ)+R^2 cos^2 (5+θ)=8  R=2(√2)    f^2 (10)+g^2 (10)  =R^2 sin^2 (10+θ)+R^2 cos^2 (10+θ)  =R^2 =8    ANS is C=8
letf(x)=pandg(x)=qdpdx=qanddqdx=pd2pdx2=dqdxd2pdx2=psod2pdx2+p=0letp=Aeαxisasolutiondpdx=Aαeαxd2pdx2=Aα2eαxAα2eαx+Aeαx=0Aeαx(α2+1)=0α2+1=0α=±isop=c1eix+c2eixdpdx=c1ieixc2ieixf(x)=c1eix+c2eixf(x)=c1(cosx+isinx)+c2(cosxisinx)=cosx(c1+c2)+sinx(ic1ic2)=Rsinθcosx+Rcosθsinx{c1+c2=Rsinθ}=Rsin(x+θ){ic1ic2=Rcosθ}sof(x)=Rsin(x+θ)g(x)=Rcos(x+θ)f(5)=Rsin(5+θ)=2f(x)=Rcos(x+θ)f(5)=Rcos(5+θ)=2R2sin2(5+θ)+R2cos2(5+θ)=8R=22f2(10)+g2(10)=R2sin2(10+θ)+R2cos2(10+θ)=R2=8ANSisC=8
Commented by LXZ last updated on 15/Jul/18
thanks sir
thankssir
Answered by ajfour last updated on 16/Jul/18
f ′′(x)= g ′(x)=−f(x)  ⇒ f(x)=Asin x+Bcos x       g(x)=f ′(x)=Acos x−Bsin x  f^2 (10)+g^2 (10)=A^2 +B^2 =f^2 (5)+g^2 (5)               =4+4 =8 .
f(x)=g(x)=f(x)f(x)=Asinx+Bcosxg(x)=f(x)=AcosxBsinxf2(10)+g2(10)=A2+B2=f2(5)+g2(5)=4+4=8.

Leave a Reply

Your email address will not be published. Required fields are marked *