Menu Close

f-x-is-a-continuous-function-forall-real-values-of-x-and-satisfies-0-x-f-t-dt-x-1-t-2-f-t-dt-x-16-8-x-6-3-A-Find-A-




Question Number 94135 by redmiiuser last updated on 17/May/20
f(x) is a continuous function forall real values of x and satisfies∫_0 ^x f(t).dt=∫_x ^1 t^2 .f(t).dt+(x^(16) /8)+(x^6 /3)+A  Find A?
$${f}\left({x}\right)\:{is}\:{a}\:{continuous}\:{function}\:{forall}\:{real}\:{values}\:{of}\:{x}\:{and}\:{satisfies}\int_{\mathrm{0}} ^{{x}} {f}\left({t}\right).{dt}=\int_{{x}} ^{\mathrm{1}} {t}^{\mathrm{2}} .{f}\left({t}\right).{dt}+\frac{{x}^{\mathrm{16}} }{\mathrm{8}}+\frac{{x}^{\mathrm{6}} }{\mathrm{3}}+{A} \\ $$$${Find}\:{A}? \\ $$
Commented by john santu last updated on 17/May/20
f(x) = −x^2  f(x) + 2x^(15) +2x^5   f(x) = ((2x^(15) +2x^5 )/(1+x^2 ))= ((2(x^2 )^7 x+2(x^2 )^2 x)/(x^2 +1))  = g(x)−((4x)/(x^2 +1))   A = −4
$$\mathrm{f}\left(\mathrm{x}\right)\:=\:−\mathrm{x}^{\mathrm{2}} \:\mathrm{f}\left(\mathrm{x}\right)\:+\:\mathrm{2x}^{\mathrm{15}} +\mathrm{2x}^{\mathrm{5}} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{2x}^{\mathrm{15}} +\mathrm{2x}^{\mathrm{5}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }=\:\frac{\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{7}} \mathrm{x}+\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} \mathrm{x}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$$=\:\mathrm{g}\left(\mathrm{x}\right)−\frac{\mathrm{4x}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\: \\ $$$$\mathrm{A}\:=\:−\mathrm{4}\: \\ $$
Commented by redmiiuser last updated on 19/May/20
no.  Wrong Answer??
$${no}. \\ $$$${Wrong}\:{Answer}?? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *