Menu Close

f-x-is-continous-function-on-R-and-lim-x-1-f-x-1-x-6-x-1-x-2-2-Evalute-lim-x-1-f-x-x-x-x-1-




Question Number 189285 by TUN last updated on 14/Mar/23
f(x) is continous function on R  and lim_(x→1) ((f(((x+1)/x))−6)/((((x−1)/x))^2 ))=2  Evalute : lim_(x→1) (((√(f(x)+x))−x)/((x−1)))=¿
f(x)iscontinousfunctiononRandlimx1f(x+1x)6(x1x)2=2Evalute:limx1f(x)+xx(x1)=¿
Answered by cortano12 last updated on 14/Mar/23
 let ((x+1)/x) =u ; x=(1/(u−1)) ; (((x−1)/x))^2 =(1−(u−1))^2   L= lim_(u→2)  ((f(u)−6)/((2−u)^2 )) = 2    { ((f(2)=6)),((L= lim_(u→2) )) :}(((f ′(u))/(−2(2−u)))) = 2⇒f ′(2)=0     L=lim_(u→2) (((f ′′(u))/2))=2⇒f ′′(2)=4
letx+1x=u;x=1u1;(x1x)2=(1(u1))2L=limu2f(u)6(2u)2=2{f(2)=6L=limu2(f(u)2(2u))=2f(2)=0L=limu2(f(u)2)=2f(2)=4
Answered by cortano12 last updated on 14/Mar/23
K=lim_(x→1)  (((√(f(x)+x))−x)/((x−1))) =   [ (√(f(1)+1))=1⇒f(1)=0 ]   K= lim_(x→1)  ((((f ′(x)+1)/(2(√(f(x)+x)))) −1)/1)  K= ((f ′(1)+1)/(2(√(f(1)+1))))−1=((f ′(1)+1)/2)−1
K=limx1f(x)+xx(x1)=[f(1)+1=1f(1)=0]K=limx1f(x)+12f(x)+x11K=f(1)+12f(1)+11=f(1)+121
Commented by TUN last updated on 14/Mar/23
f(x) is quadratic function
f(x)isquadraticfunction
Commented by mr W last updated on 14/Mar/23
no! there are infinite possibilities.  f(x)=(x−2)^2 g(x)+6   g(x) can be any function with g(2)=2.
no!thereareinfinitepossibilities.f(x)=(x2)2g(x)+6g(x)canbeanyfunctionwithg(2)=2.

Leave a Reply

Your email address will not be published. Required fields are marked *