Menu Close

f-x-p-f-x-p-6x-4-f-20-29p-f-p-2p-




Question Number 95662 by john santu last updated on 26/May/20
f(x+p) + f(x−p) = 6x−4  f(20) = 29p  ((f(p))/(2p)) = ?
f(x+p)+f(xp)=6x4f(20)=29pf(p)2p=?
Commented by i jagooll last updated on 26/May/20
replace x+p = x   (1) f(x)+f(x−2p)=6x−6p−4  replace x−p=x  (2)f(x+2p)+f(x)=6x+6p−4  ⇒(1)−(2)   f(x−2p)−f(x+2p) = −12p  let x−2p = 20 ⇒x=20+2p  f(20)−f(20+4p) = −12p  29p+12p = f(20+4p)  f(20+4p) = 41p  let 20+4p = t ⇒p = ((t−20)/4)  f(t) = 41(((t−20)/4)) = ((41t−820)/4)  ((f(t))/(2t)) = ((41t−820)/(8t))
replacex+p=x(1)f(x)+f(x2p)=6x6p4replacexp=x(2)f(x+2p)+f(x)=6x+6p4(1)(2)f(x2p)f(x+2p)=12pletx2p=20x=20+2pf(20)f(20+4p)=12p29p+12p=f(20+4p)f(20+4p)=41plet20+4p=tp=t204f(t)=41(t204)=41t8204f(t)2t=41t8208t
Commented by PRITHWISH SEN 2 last updated on 26/May/20
put p=0  2f(x)=6x−4 ⇒f(x)=3x−2⇒f(20)=58  ⇒p=2  ∴((f(p))/(2p)) = ((3×2−2)/(2×2)) =1  please check
putp=02f(x)=6x4f(x)=3x2f(20)=58p=2f(p)2p=3×222×2=1pleasecheck
Commented by i jagooll last updated on 27/May/20
how can p = 0 and p = 2 ?  it meant 0 = 2 ?
howcanp=0andp=2?itmeant0=2?
Commented by PRITHWISH SEN 2 last updated on 27/May/20
for the 1st equation p is the point which can   take any value.  But for the second equation it is a constant.   now fixed the value of p at 2 then you get  for f(x)=3x−2  then f(x+2)+f(x−2)=3(x+2)−2+3(x−2)−2              = 6x−4  and f(20)= 3×20−2=58=29p  where p=2
forthe1stequationpisthepointwhichcantakeanyvalue.Butforthesecondequationitisaconstant.nowfixedthevalueofpat2thenyougetforf(x)=3x2thenf(x+2)+f(x2)=3(x+2)2+3(x2)2=6x4andf(20)=3×202=58=29pwherep=2
Commented by i jagooll last updated on 27/May/20
alright sir. thank you
alrightsir.thankyou
Answered by john santu last updated on 28/May/20
let f(x) = ax+b   f(x+p) = ax+ap+b  (i)  f(x−p)= ax−ap+b  (ii)  (i)+(ii) ⇒2ax+2b = 6x−4   a = 3 , b = −2   f(x) = 3x−2   f(20) = 58 = 29p ; p = 2  ((f(p))/(2p)) = ((f(2))/4) = ((6−2)/4) = 1
letf(x)=ax+bf(x+p)=ax+ap+b(i)f(xp)=axap+b(ii)(i)+(ii)2ax+2b=6x4a=3,b=2f(x)=3x2f(20)=58=29p;p=2f(p)2p=f(2)4=624=1

Leave a Reply

Your email address will not be published. Required fields are marked *