Menu Close

f-x-sin-sin-2-x-cos-sin-2-x-then-the-range-of-f-x-is-




Question Number 24042 by Tinkutara last updated on 11/Nov/17
f(x) = sin(sin^2 x) + cos(sin^2 x) then the  range of f(x) is
$${f}\left({x}\right)\:=\:\mathrm{sin}\left(\mathrm{sin}^{\mathrm{2}} {x}\right)\:+\:\mathrm{cos}\left(\mathrm{sin}^{\mathrm{2}} {x}\right)\:\mathrm{then}\:\mathrm{the} \\ $$$$\mathrm{range}\:\mathrm{of}\:{f}\left({x}\right)\:\mathrm{is} \\ $$
Commented by mrW1 last updated on 11/Nov/17
[1,(√2)]  f(x)=sin (sin^2  x)+cos (sin^2  x)  =(√2)[sin (sin^2  x)cos (π/4)+cos (sin^2  x)sin (π/4)]  =(√2) sin (sin^2  x+(π/4))    sin (sin^2  x+(π/4))≥sin (π/4)=(1/( (√2)))  sin (sin^2  x+(π/4))≤1  ⇒1≤f(x)≤(√2)
$$\left[\mathrm{1},\sqrt{\mathrm{2}}\right] \\ $$$${f}\left({x}\right)=\mathrm{sin}\:\left(\mathrm{sin}^{\mathrm{2}} \:{x}\right)+\mathrm{cos}\:\left(\mathrm{sin}^{\mathrm{2}} \:{x}\right) \\ $$$$=\sqrt{\mathrm{2}}\left[\mathrm{sin}\:\left(\mathrm{sin}^{\mathrm{2}} \:{x}\right)\mathrm{cos}\:\frac{\pi}{\mathrm{4}}+\mathrm{cos}\:\left(\mathrm{sin}^{\mathrm{2}} \:{x}\right)\mathrm{sin}\:\frac{\pi}{\mathrm{4}}\right] \\ $$$$=\sqrt{\mathrm{2}}\:\mathrm{sin}\:\left(\mathrm{sin}^{\mathrm{2}} \:{x}+\frac{\pi}{\mathrm{4}}\right) \\ $$$$ \\ $$$$\mathrm{sin}\:\left(\mathrm{sin}^{\mathrm{2}} \:{x}+\frac{\pi}{\mathrm{4}}\right)\geqslant\mathrm{sin}\:\frac{\pi}{\mathrm{4}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\mathrm{sin}\:\left(\mathrm{sin}^{\mathrm{2}} \:{x}+\frac{\pi}{\mathrm{4}}\right)\leqslant\mathrm{1} \\ $$$$\Rightarrow\mathrm{1}\leqslant{f}\left({x}\right)\leqslant\sqrt{\mathrm{2}} \\ $$
Commented by Tinkutara last updated on 12/Nov/17
Thank you very much Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$
Answered by chowdhuryashis last updated on 11/Nov/17
[−2,2]
$$\left[−\mathrm{2},\mathrm{2}\right] \\ $$
Commented by Tinkutara last updated on 12/Nov/17
Wrong.
$$\mathrm{Wrong}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *