Menu Close

f-x-sinx-cosx-f-x-




Question Number 125165 by Mammadli last updated on 08/Dec/20
f(x)=sinx^(cosx)   f ′(x)=?
$$\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\boldsymbol{{sinx}}^{\boldsymbol{{cosx}}} \\ $$$$\boldsymbol{{f}}\:'\left(\boldsymbol{{x}}\right)=? \\ $$
Answered by Dwaipayan Shikari last updated on 08/Dec/20
f(x)=(sinx)^(cosx)   log(f(x))=cosxlog(sinx)  ((f′(x))/(f(x)))=−sinxlog(sinx)+((cos^2 x)/(sinx))  f′(x)=(sinx)^(cosx) (log((1/((sinx)^(sinx) )))+(sinx)^(cosx−1) cos^2 x
$${f}\left({x}\right)=\left({sinx}\right)^{{cosx}} \\ $$$${log}\left({f}\left({x}\right)\right)={cosxlog}\left({sinx}\right) \\ $$$$\frac{{f}'\left({x}\right)}{{f}\left({x}\right)}=−{sinxlog}\left({sinx}\right)+\frac{{cos}^{\mathrm{2}} {x}}{{sinx}} \\ $$$${f}'\left({x}\right)=\left({sinx}\right)^{{cosx}} \left({log}\left(\frac{\mathrm{1}}{\left({sinx}\right)^{{sinx}} }\right)+\left({sinx}\right)^{{cosx}−\mathrm{1}} {cos}^{\mathrm{2}} {x}\right. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *