Menu Close

f-x-tan-pi-4-x-1-x-k-is-conntinous-at-x-0-then-k-




Question Number 48581 by Kiran bendkoli last updated on 25/Nov/18
f(x)=[tan( π/4+x)^(1/x) ]           =k  is conntinous at x=0 then k=?
f(x)=[tan(π/4+x)1/x]=kisconntinousatx=0thenk=?
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Nov/18
i think f(x)=[tan((π/4)+x)]^(1/x)   f(x)=[((1+x)/(1−x))]^(1/x)   ln{f(x)}=((ln(1+x)−ln(1−x))/x)  ln{f(x)}=((ln(1+x))/x)+((ln(1−x))/(−x))  lim_(x→0) ln{f(x)}=lim_(x→0) {((ln(1+x))/x)+((ln(1−x))/(−x))}       =1+1=2  so k=e^2
ithinkf(x)=[tan(π4+x)]1xf(x)=[1+x1x]1xln{f(x)}=ln(1+x)ln(1x)xln{f(x)}=ln(1+x)x+ln(1x)xlimx0ln{f(x)}=limx0{ln(1+x)x+ln(1x)x}=1+1=2sok=e2

Leave a Reply

Your email address will not be published. Required fields are marked *