Menu Close

f-x-x-1-x-2-x-2021-f-2021-




Question Number 151884 by mathdanisur last updated on 23/Aug/21
f(x)=(x-1)(x-2)...(x-2021)  f^′ (2021) = ?
f(x)=(x1)(x2)(x2021)f(2021)=?
Answered by mr W last updated on 24/Aug/21
ln y=ln (x−1)+ln (x−2)+...+ln (x−2021)  ((y′)/y)=(1/(x−1))+(1/(x−2))+...+(1/(x−2021))  y′=(x−1)(x−2)...(x−2021)[(1/(x−1))+(1/(x−2))+...+(1/(x−2021))]  y′∣_(x=2021) =2020×2019×...×2×1=2020!
lny=ln(x1)+ln(x2)++ln(x2021)yy=1x1+1x2++1x2021y=(x1)(x2)(x2021)[1x1+1x2++1x2021]yx=2021=2020×2019××2×1=2020!
Commented by mathdanisur last updated on 24/Aug/21
Thank you Ser
ThankyouSer
Answered by Olaf_Thorendsen last updated on 23/Aug/21
f(x) = Π_(k=1) ^(2021) (x−k)  f(x) = (x−2021)Π_(k=1) ^(2020) (x−k)  Let g(x) = Π_(k=1) ^(2020) (x−k)  f(x) = (x−2021)g(x)  f′(x) = (x−2021)g′(x)+g(x)  f′(2021) = g(2021) = Π_(k=1) ^(2020) (2021−k)  f′(2021) = Π_(k=1) ^(2020) k = 2020!
f(x)=2021k=1(xk)f(x)=(x2021)2020k=1(xk)Letg(x)=2020k=1(xk)f(x)=(x2021)g(x)f(x)=(x2021)g(x)+g(x)f(2021)=g(2021)=2020k=1(2021k)f(2021)=2020k=1k=2020!
Commented by mathdanisur last updated on 23/Aug/21
Thank You Ser
ThankYouSer

Leave a Reply

Your email address will not be published. Required fields are marked *