Menu Close

f-x-x-1-x-show-that-K-R-such-that-x-y-R-f-x-f-y-K-x-y-




Question Number 166805 by mathocean1 last updated on 28/Feb/22
f(x)=(x/(1+∣x∣)).  show that ∃ K ∈ R_+  such that  ∀ x, y ∈ R, ∣f(x)−f(y)∣≤K∣x−y∣
$${f}\left({x}\right)=\frac{{x}}{\mathrm{1}+\mid{x}\mid}. \\ $$$${show}\:{that}\:\exists\:{K}\:\in\:\mathbb{R}_{+} \:{such}\:{that} \\ $$$$\forall\:{x},\:{y}\:\in\:\mathbb{R},\:\mid{f}\left({x}\right)−{f}\left({y}\right)\mid\leqslant{K}\mid{x}−{y}\mid \\ $$
Answered by TheSupreme last updated on 28/Feb/22
f′(x)=((1+∣x∣−∣x∣)/((1+∣x∣)^2 ))=(1/((1+∣x∣)^2 ))≤1  f(x)−f(x+h)≤f(x)−(f(x+h)+h)≤−h  f(x)−f(y)≤x−y  ((f(x)−f(y))/(x−y))≤1
$${f}'\left({x}\right)=\frac{\mathrm{1}+\mid{x}\mid−\mid{x}\mid}{\left(\mathrm{1}+\mid{x}\mid\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\left(\mathrm{1}+\mid{x}\mid\right)^{\mathrm{2}} }\leqslant\mathrm{1} \\ $$$${f}\left({x}\right)−{f}\left({x}+{h}\right)\leqslant{f}\left({x}\right)−\left({f}\left({x}+{h}\right)+{h}\right)\leqslant−{h} \\ $$$${f}\left({x}\right)−{f}\left({y}\right)\leqslant{x}−{y} \\ $$$$\frac{{f}\left({x}\right)−{f}\left({y}\right)}{{x}−{y}}\leqslant\mathrm{1} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *