Menu Close

f-x-x-1-x-x-2-min-f-




Question Number 183669 by mnjuly1970 last updated on 28/Dec/22
       f(x)= (x/(1 + x + x^( 2) ))         min_( f)  = ?
f(x)=x1+x+x2minf=?
Answered by manolex last updated on 28/Dec/22
f(x)=(1/((1/x)+1+x))  (1/x)+x  ≫2  (1/x)+x+1≫3  (1/((1/x)+x+1))≪(1/3)   is max     l_(x→∞) imf(x)=         (1/((1/∞)+1+∞))=(1/(0+1+∞))=(1/∞)=0   correction  x⟨0  x+(1/x)≪−2  x+(1/x)+1≪−1  (1/(x+(1/x)+1))≫−1  −1≪f(x)≪(1/3)  min=−1
f(x)=11x+1+x1x+x21x+x+1311x+x+113ismaxlximf(x)=11+1+=10+1+=1=0correctionx0x+1x2x+1x+111x+1x+111f(x)13min=1
Commented by manolex last updated on 28/Dec/22
thanks,Sir W, for correction
thanks,SirW,forcorrection
Answered by mr W last updated on 28/Dec/22
if x=0, f(x)=0  for x≠0:  f(x)=(1/(x+(1/x)+1))  for x>0:  f(x)=(1/(x+(1/x)+1))≤(1/(2+1))=(1/3)  for x<0:  f(x)=(1/(x+(1/x)+1))=(1/(−(−x+(1/(−x)))+1))≥(1/(−2+1))=−1  ⇒−1≤f(x)≤(1/3)  i.e. max. f(x)=(1/3) and min. f(x)=−1
ifx=0,f(x)=0forx0:f(x)=1x+1x+1forx>0:f(x)=1x+1x+112+1=13forx<0:f(x)=1x+1x+1=1(x+1x)+112+1=11f(x)13i.e.max.f(x)=13andmin.f(x)=1
Answered by Frix last updated on 28/Dec/22
f′(x)=((1−x^2 )/((1+x+x^2 )^2 ))  f′′(x)=−((2(1+3x−x^3 ))/((1+x+x^2 )))  f′(x)=0 ⇒ x_1 =−1∧x_2 =1  f′′(−1)=2>0 ⇒ minimum is −1 at x=−1  f′′(1)=−(2/9) ⇒ maximum is (1/3) at x=1
f(x)=1x2(1+x+x2)2f(x)=2(1+3xx3)(1+x+x2)f(x)=0x1=1x2=1f(1)=2>0minimumis1atx=1f(1)=29maximumis13atx=1
Answered by manxsol last updated on 28/Dec/22
  a  ≪ (x/(1+x+x^2 ))≪b  a≪(x/(1+x+x^2 ))  ((a+ax+ax^2 −x)/(1+x+x^2 )) ≪0  ax^2 +(a−1)x+a≪0  △=(a−1)^2 −4a^2 ≫0  (a−1−2a)(a−1+2a)≫0  (−a−1)(3a−1)≫0  (a+1)(3a−1)≪0  −1≪a≪(1/3)  min f(x)=−1
ax1+x+x2bax1+x+x2a+ax+ax2x1+x+x20ax2+(a1)x+a0=(a1)24a20(a12a)(a1+2a)0(a1)(3a1)0(a+1)(3a1)01a13minf(x)=1
Commented by mr W last updated on 29/Dec/22
nice approach!
niceapproach!
Commented by manxsol last updated on 29/Dec/22
following his vision, thanks
followinghisvision,thanks

Leave a Reply

Your email address will not be published. Required fields are marked *