Menu Close

f-x-x-2-1-x-3-Find-f-1-




Question Number 108901 by ZiYangLee last updated on 20/Aug/20
f(x)=x^2 (1+x)^3   Find f′′(1).
$${f}\left({x}\right)={x}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)^{\mathrm{3}} \\ $$$$\mathrm{Find}\:{f}''\left(\mathrm{1}\right).\: \\ $$
Answered by malwaan last updated on 20/Aug/20
f ′(x)=x^2 ×3(1+x)^2 +(1+x)^3 ×2x  =(1+x)^2 (3x^2 +2x+2x^2 )  =(1+x)^2 (5x^2 +2x)  ⇒f ′′(x)=(1+x)^2 (10x+2)+                 (5x^2 +2x)(2)(1+x)  ∴f ′′(1)= 4×12+ 7×2×2                  = 48+28 =76
$${f}\:'\left({x}\right)={x}^{\mathrm{2}} ×\mathrm{3}\left(\mathrm{1}+{x}\right)^{\mathrm{2}} +\left(\mathrm{1}+{x}\right)^{\mathrm{3}} ×\mathrm{2}{x} \\ $$$$=\left(\mathrm{1}+{x}\right)^{\mathrm{2}} \left(\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}{x}^{\mathrm{2}} \right) \\ $$$$=\left(\mathrm{1}+{x}\right)^{\mathrm{2}} \left(\mathrm{5}{x}^{\mathrm{2}} +\mathrm{2}{x}\right) \\ $$$$\Rightarrow{f}\:''\left({x}\right)=\left(\mathrm{1}+{x}\right)^{\mathrm{2}} \left(\mathrm{10}{x}+\mathrm{2}\right)+ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{5}{x}^{\mathrm{2}} +\mathrm{2}{x}\right)\left(\mathrm{2}\right)\left(\mathrm{1}+{x}\right) \\ $$$$\therefore{f}\:''\left(\mathrm{1}\right)=\:\mathrm{4}×\mathrm{12}+\:\mathrm{7}×\mathrm{2}×\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{48}+\mathrm{28}\:=\mathrm{76} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *