Menu Close

f-x-x-2-4x-13-x-2-14x-130-minimum-value-of-f-x-x-R-




Question Number 175871 by infinityaction last updated on 08/Sep/22
  f(x) = (√(x^2 −4x+13)) + (√(x^2 −14x+130))   minimum value of  f(x)  x ∈ R
f(x)=x24x+13+x214x+130minimumvalueoff(x)xR
Answered by mr W last updated on 08/Sep/22
f(x)=(√((x−2)^2 +3^2 ))+(√((7−x)^2 +9^2 ))  ≥(√((x−2+7−x)^2 +(3+9)^2 ))=(√(5^2 +12^2 ))=13  ⇒f(x)_(min) =13
f(x)=(x2)2+32+(7x)2+92(x2+7x)2+(3+9)2=52+122=13f(x)min=13
Answered by cortano1 last updated on 08/Sep/22
 f(x)=(√((2−x)^2 +9)) +(√((x−7)^2 +81))   f(x) min when ((2−x)/(x−7)) = (3/9)     ((2−x)/(x−7)) =(1/3) ⇒x−7=6−3x    x=((13)/4) ⇒min f(x)=(√((2−((13)/4))^2 +9)) +(√((((13)/4)−7)^2 +81))    = (√(((25)/(16))+9)) +(√(((225)/(16))+81))     =(√((169)/(16))) +(√((1521)/(16))) =13
f(x)=(2x)2+9+(x7)2+81f(x)minwhen2xx7=392xx7=13x7=63xx=134minf(x)=(2134)2+9+(1347)2+81=2516+9+22516+81=16916+152116=13
Commented by infinityaction last updated on 08/Sep/22
explain your 2^(nd)  line  this  ((2−x)/(x−7))  = (3/9)
explainyour2ndlinethis2xx7=39

Leave a Reply

Your email address will not be published. Required fields are marked *