Menu Close

f-x-x-2-x-1-x-1-where-x-1-find-the-range-of-the-function-




Question Number 148241 by 7770 last updated on 26/Jul/21
 f:x→((x^2 +x−1)/(x−1)) where x≠1   find the range of the function
f:xx2+x1x1wherex1findtherangeofthefunction
Answered by Olaf_Thorendsen last updated on 26/Jul/21
f(x) = ((x^2 +x−1)/(x−1)) = x+2+(1/(x−1))  lim_(x→±∞) f(x) = ±∞, limf(x) = ±∞_(x→1^± )     f′(x) = 1−(1/((x−1)^2 ))  f′(x) = 0 ⇔ x = 2  f(0) = 1 and f(2) = 5  ∀x∈]0,1[∪]1,2[, f′(x) < 0   ∀x∈]−∞,0[∪]2,+∞[, f′(x) > 0    f(]−∞,0]) = ]−∞,1]  f([0,1[) = [−∞,1]  f(]1,2]) = [5,+∞]  f([2,+∞[) = [5,+∞]    • f(R\{1}) = R\]1,5[
f(x)=x2+x1x1=x+2+1x1limx±f(x)=±,limf(x)=±x1±f(x)=11(x1)2f(x)=0x=2f(0)=1andf(2)=5x]0,1[]1,2[,f(x)<0x],0[]2,+[,f(x)>0f(],0])=],1]f([0,1[)=[,1]f(]1,2])=[5,+]f([2,+[)=[5,+]f(R{1})=R]1,5[
Answered by liberty last updated on 26/Jul/21
y(x−1)=x^2 +x−1  ⇒x^2 +(1−y)x+y−1=0  ⇒Δ≥0   ⇉ (1−y)^2 −4(y−1)≥0  ⇉ (y−1)(y−5)≥0  ⇉ y≤1 ∪ y≥ 5  R_f = {y∈R∣ y≤1 ∪ y≥ 5 }
y(x1)=x2+x1x2+(1y)x+y1=0Δ0(1y)24(y1)0(y1)(y5)0y1y5Rf={yRy1y5}

Leave a Reply

Your email address will not be published. Required fields are marked *