Menu Close

f-x-x-2022-Find-derivative-f-n-




Question Number 177133 by Matica last updated on 01/Oct/22
  f(x) = x^(2022)  . Find  derivative f^((n)) .
f(x)=x2022.Findderivativef(n).
Answered by JDamian last updated on 01/Oct/22
f^((n)) = { ((((2022!)/((2022−n)!)) x^(2022−n)      ∀n≤2022)),((            0                                ∀n>2022)) :}
f(n)={2022!(2022n)!x2022nn20220n>2022
Answered by a.lgnaoui last updated on 01/Oct/22
f^((1)) =2022x^(2021)   f^((2)) =(2022×2021)x^(2020)   f^((3)) =(2022×2021×2020)x^(2019)     .......  f^((n)) =[2022×2021×2020×.....×(2022−n+1)]x^(2022−n)   f^((n)) =((2022!)/((2022−n)!))x^(2022−n)     f^((2022)) =2022×2021×2020×.....×1)=2022!  f^((2023)) =(2022!)^′ =(constante)^′ =0  ⇒f^((2023+p)) =0  donc    n≤2022   f^((n)) =((2022!)/((2022−n)!))x^(2022−n)                 n≥2023    f^((n)) =0
f(1)=2022x2021f(2)=(2022×2021)x2020f(3)=(2022×2021×2020)x2019.f(n)=[2022×2021×2020×..×(2022n+1)]x2022nf(n)=2022!(2022n)!x2022nf(2022)=2022×2021×2020×..×1)=2022!f(2023)=(2022!)=(constante)=0f(2023+p)=0doncn2022f(n)=2022!(2022n)!x2022nn2023f(n)=0

Leave a Reply

Your email address will not be published. Required fields are marked *