Menu Close

F-x-x-2x-dx-t-4-t-2-1-1-Show-that-F-is-defined-continuous-and-derivable-in-R-




Question Number 128853 by Ar Brandon last updated on 10/Jan/21
F(x)=∫_x ^(2x) (dx/( (√(t^4 +t^2 +1))))  1. Show that F is defined, continuous and derivable in R
F(x)=x2xdxt4+t2+11.ShowthatFisdefined,continuousandderivableinR
Answered by mathmax by abdo last updated on 11/Jan/21
F(x)=∫_R   (1/( (√(t^4  +t^2 +1)))) χ_([x,2x]) (t)dt  the function x→((χ_([x,2x]) (t))/( (√(t^4  +t^2 +1)))) is continue and derivable so  F is derivable and F^′ (x)=∫_R  (∂/∂x){((χ_([x,2x]) (t))/( (√(t^4  +t^2  +1))))}dt  =(2/( (√((2x)^4  +(2x)^2  +1))))−(1/( (√(x^4  +x^2  +1)))) =(2/( (√(16x^4  +4x^2  +1))))−(1/( (√(x^4  +x^2  +1))))
F(x)=R1t4+t2+1χ[x,2x](t)dtthefunctionxχ[x,2x](t)t4+t2+1iscontinueandderivablesoFisderivableandF(x)=Rx{χ[x,2x](t)t4+t2+1}dt=2(2x)4+(2x)2+11x4+x2+1=216x4+4x2+11x4+x2+1

Leave a Reply

Your email address will not be published. Required fields are marked *