Menu Close

f-x-x-3-2x-4-f-1-x-




Question Number 54975 by naka3546 last updated on 15/Feb/19
f(x)  =  x^3  − 2x + 4  f^(−1) (x)  =  ?
f(x)=x32x+4f1(x)=?
Answered by mr W last updated on 15/Feb/19
y=x^3 −2x+4  x^3 −2x+4−y=0  (u+v)^3 −3uv(u+v)−(u^3 +v^3 )=0  ley x=u+v  ⇒u^3 v^3 =(8/(27))  ⇒u^3 +v^3 =y−4  z^2 −(y−4)z+(8/(27))=0  z=(1/2)[y−4±(√(y^2 −8y+((400)/(27))))]  u=(((y−4+(√(y^2 −8y+((400)/(27))))))^(1/3) /( (2)^(1/3) ))  u=(((y−4−(√(y^2 −8y+((400)/(27))))))^(1/3) /( (2)^(1/3) ))  ⇒x=u+v=((((y−4+(√(y^2 −8y+((400)/(27))))))^(1/3) +((y−4−(√(y^2 −8y+((400)/(27))))))^(1/3) )/( (2)^(1/3) ))  ⇒f^(−1) (x)=((((x−4+(√(x^2 −8x+((400)/(27))))))^(1/3) +((x−4−(√(x^2 −8x+((400)/(27))))))^(1/3) )/( (2)^(1/3) ))
y=x32x+4x32x+4y=0(u+v)33uv(u+v)(u3+v3)=0leyx=u+vu3v3=827u3+v3=y4z2(y4)z+827=0z=12[y4±y28y+40027]u=y4+y28y+40027323u=y4y28y+40027323x=u+v=y4+y28y+400273+y4y28y+40027323f1(x)=x4+x28x+400273+x4x28x+40027323
Answered by MJS last updated on 15/Feb/19
f′(x)=0  3x^2 −2=0 ⇒ x=±((√6)/3)  f(−((√6)/3))=4+(4/9)(√6)  f(((√6)/3))=4−(4/9)(√6)  f′′(x)=0  6x=0 ⇒ x=0  f(0)=4    ⇒ f^(−1) (x) has got 3 parts  which are real  ⇒ we have to use the trigonometric method    x=y^3 −2y+4  y^3 −2y+(4−x)=0  y_k =2(√(−(p/3)))sin ((1/3)(2πk+arcsin (((9q)/(2p^2 ))(√(−(p/3))))))  y_1 =((2(√6))/3)sin ((1/3)(π+arcsin ((3(√6)(x−4))/8)))  y_2 =−((2(√6))/3)cos ((1/3)((π/2)+arcsin ((3(√6)(x−4))/8)))  y_3 =−((2(√6))/3)sin ((1/3)arcsin ((3(√6)(x−4))/8))
f(x)=03x22=0x=±63f(63)=4+496f(63)=4496f(x)=06x=0x=0f(0)=4f1(x)hasgot3partswhicharerealwehavetousethetrigonometricmethodx=y32y+4y32y+(4x)=0yk=2p3sin(13(2πk+arcsin(9q2p2p3)))y1=263sin(13(π+arcsin36(x4)8))y2=263cos(13(π2+arcsin36(x4)8))y3=263sin(13arcsin36(x4)8)
Answered by Rio Mike last updated on 16/Feb/19
let y= −2x+4  y−4=−2x  ⇒ x_1 = ((y−4)/(−2))  then let y= x^3   ⇒ x_2 =(y)^(1/3)     y=f^(−1) = x_(1 ) + x_2   f^(−1) = ((x−4)/(−2)) + (x)^(1/3)    f^(−1) = −(x/2)+2 + (x)^(1/3)    f^(−1) = ((−x+2(x)^(1/3) )/2) +2
lety=2x+4y4=2xx1=y42thenlety=x3x2=y3y=f1=x1+x2f1=x42+x3f1=x2+2+x3f1=x+2x32+2

Leave a Reply

Your email address will not be published. Required fields are marked *