Menu Close

F-x-x-3-9x-2-24x-c-0-has-three-real-and-distinct-roots-amp-Q-1-Possible-value-of-c-is-Q-2-If-8-then-c-is-Q-3-If-7-then-c-is-Options-for-the-above




Question Number 39142 by rahul 19 last updated on 03/Jul/18
F(x) = x^3 −9x^2 +24x+c=0 has three  real and distinct roots α , β & γ .  Q.1 → Possible value of c is :  Q.2 → If [α]+[β]+[γ]= 8 then c is :  Q.3 → If [α]+[β]+[γ]=7 then c is :    Options for the above 3 Q. →  a) (−20,−16)        b) (−20,−18)  c) (−18,−16)         d) none of these.    [.] = greatest integer function.
F(x)=x39x2+24x+c=0hasthreerealanddistinctrootsα,β&γ.Q.1Possiblevalueofcis:Q.2If[α]+[β]+[γ]=8thencis:Q.3If[α]+[β]+[γ]=7thencis:Optionsfortheabove3Q.a)(20,16)b)(20,18)c)(18,16)d)noneofthese.[.]=greatestintegerfunction.
Answered by MJS last updated on 03/Jul/18
f(x)=x^3 −9x^2 +24x+c  f′(x)=3x^2 −18x+24  x^2 −6x+8=0  x_1 =2; x_2 =4  f(2)=20+c [local max]  f(4)=16+c [local min]  ⇒ f(x) has 3 real and distinct roots with  −20<c<−16 ⇒ if c∈Z: c∈{−19, −18, −17}    for Q2 & Q3 we have to solve the three  equations  x^3 −9x^2 +24x−17=0  x^3 −9x^2 +24x−18=0  x^3 −9x^2 +24x−19=0  with x=z+3 we get  z^3 −3z+1=0  z^3 −3z=0  z^3 +3z−1=0  the 2^(nd)  one is easy to solve  for the 1^(st)  & 3^(rd)  we use the trigonometric  formula  z=2(√(−(p/3)))sin((1/3)(arcsin(((9q)/(2p^2 ))(√(−(p/3))))+2kπ)) with k=0, 1, 2    z^3 −3z+1=0       z={−2cos (π/9); 2sin (π/(18)); 2cos ((2π)/9)}       x={3−2cos (π/9); 3+2sin (π/(18)); 3+2cos ((2π)/9)}       [x]={1; 3; 4} ⇒ sum([x])=8  z^3 −3z=0       z={−(√3); 0; (√3)}       x={3−(√3); 3; 3+(√3)}       [x]={1; 3; 4} ⇒ sum([x])=8  z^3 −3z−1=0       z={−2cos ((2π)/9); −2sin (π/(18)); 2cos (π/9)}       x={3−2cos ((2π)/9); 3−2sin (π/(18)); 3+2cos (π/9)}       [x]={1; 2; 4} ⇒ sum([x])=7    Q1: c∈{−19; −18; −17}  Q2: c=−18 ∨ c=−17  Q3: c=−19
f(x)=x39x2+24x+cf(x)=3x218x+24x26x+8=0x1=2;x2=4f(2)=20+c[localmax]f(4)=16+c[localmin]f(x)has3realanddistinctrootswith20<c<16ifcZ:c{19,18,17}forQ2&Q3wehavetosolvethethreeequationsx39x2+24x17=0x39x2+24x18=0x39x2+24x19=0withx=z+3wegetz33z+1=0z33z=0z3+3z1=0the2ndoneiseasytosolveforthe1st&3rdweusethetrigonometricformulaz=2p3sin(13(arcsin(9q2p2p3)+2kπ))withk=0,1,2z33z+1=0z={2cosπ9;2sinπ18;2cos2π9}x={32cosπ9;3+2sinπ18;3+2cos2π9}[x]={1;3;4}sum([x])=8z33z=0z={3;0;3}x={33;3;3+3}[x]={1;3;4}sum([x])=8z33z1=0z={2cos2π9;2sinπ18;2cosπ9}x={32cos2π9;32sinπ18;3+2cosπ9}[x]={1;2;4}sum([x])=7Q1:c{19;18;17}Q2:c=18c=17Q3:c=19
Commented by rahul 19 last updated on 03/Jul/18
Thank You Sir ! ����

Leave a Reply

Your email address will not be published. Required fields are marked *