Menu Close

f-x-x-4-2x-3-3x-2-4x-5-Find-the-roots-




Question Number 39779 by ajfour last updated on 10/Jul/18
f(x)=x^4 −2x^3 +3x^2 −4x+5  Find the roots.
f(x)=x42x3+3x24x+5Findtheroots.
Answered by MJS last updated on 11/Jul/18
approximate:  x_1 =−.287815−1.41609i  x_2 =−.287815+1.41609i  x_3 =1.28782−.857897i  x_4 =1.28782+.857897i  exact:  the usual procedure, but we have two pairs  of conjugated complex solutions  f(x)=(x−α−(√β)i)(x−α+(√β)i)(x−γ−(√δ)i)(x−γ+(√δ)i)  ⇒ α=1−γ        β=((γ(2γ^2 −3γ+3))/(2γ−1))        δ=(((γ−1)(2γ^2 −γ+2))/(2γ−1))  γ^6 −3γ^5 +(9/2)γ^4 −4γ^3 +((21)/(16))γ^2 +(3/(16))γ−(3/(16))=0  γ=u+(1/2)  u^6 +(3/4)u^4 −(3/4)u^2 −(1/(16))=0  u=(√v)  v^3 +(3/4)v^2 −(3/4)v−(1/(16))=0  v=w−(1/4)  w^3 −((15)/(16))w+(5/(32))=0  this has got 3 real solutions, so we need the  trigonometric method.  w_k =2(√(−(p/3)))sin((1/3)(arcsin(((9q)/(2p^2 ))(√(−(p/3))))+2kπ)) with k=0, 1, 2  p=−((15)/(16)); q=(5/(32))  w_0 =((√5)/2)sin((1/3)arcsin ((√5)/5))  w_1 =((√5)/2)cos((π/6)+(1/3)arcsin ((√5)/5))  w_2 =−((√5)/2)sin((π/3)+(1/3)arcsin ((√5)/5))  again the way back is hard if you want  exact solutions. all three w_k  lead to the  same set of α, β, γ, δ but I recommend to  take w_1  to get real values in each step back.
approximate:x1=.2878151.41609ix2=.287815+1.41609ix3=1.28782.857897ix4=1.28782+.857897iexact:theusualprocedure,butwehavetwopairsofconjugatedcomplexsolutionsf(x)=(xαβi)(xα+βi)(xγδi)(xγ+δi)α=1γβ=γ(2γ23γ+3)2γ1δ=(γ1)(2γ2γ+2)2γ1γ63γ5+92γ44γ3+2116γ2+316γ316=0γ=u+12u6+34u434u2116=0u=vv3+34v234v116=0v=w14w31516w+532=0thishasgot3realsolutions,soweneedthetrigonometricmethod.wk=2p3sin(13(arcsin(9q2p2p3)+2kπ))withk=0,1,2p=1516;q=532w0=52sin(13arcsin55)w1=52cos(π6+13arcsin55)w2=52sin(π3+13arcsin55)againthewaybackishardifyouwantexactsolutions.allthreewkleadtothesamesetofα,β,γ,δbutIrecommendtotakew1togetrealvaluesineachstepback.
Commented by MJS last updated on 10/Jul/18
Ferrari is very complicated sometimes but  yes, it always gives all solutions. Still the  problem witb the 3 real solutions occurs...
Ferrariisverycomplicatedsometimesbutyes,italwaysgivesallsolutions.Stilltheproblemwitbthe3realsolutionsoccurs
Commented by ajfour last updated on 10/Jul/18
I read a little of Ferrari′s solution.
IreadalittleofFerrarissolution.
Commented by ajfour last updated on 11/Jul/18
Thanks for this much,Sir.  Whats the trigonometric way  for our cubic eq. ?
Thanksforthismuch,Sir.Whatsthetrigonometricwayforourcubiceq.?

Leave a Reply

Your email address will not be published. Required fields are marked *