Menu Close

f-x-x-a-3a-x-with-a-gt-0-is-given-If-f-max-f-min-32-find-a-




Question Number 186265 by mnjuly1970 last updated on 02/Feb/23
     f(x)= (√( x −a))  + (√(3a −x))   with ( a>0)      is  given .If  ,  f_( max)  . f_( min)  = (√(32))       find  ,       ”   a  ”  = ?
$$ \\ $$$$\:\:\:{f}\left({x}\right)=\:\sqrt{\:{x}\:−{a}}\:\:+\:\sqrt{\mathrm{3}{a}\:−{x}}\:\:\:{with}\:\left(\:{a}>\mathrm{0}\right) \\ $$$$\:\:\:\:{is}\:\:{given}\:.{If}\:\:,\:\:{f}_{\:{max}} \:.\:{f}_{\:{min}} \:=\:\sqrt{\mathrm{32}} \\ $$$$\:\:\:\:\:{find}\:\:,\:\:\:\:\:\:\:''\:\:\:{a}\:\:''\:\:=\:? \\ $$
Answered by mahdipoor last updated on 02/Feb/23
(df/dx)=(1/(2(√(x−a))))+((−1)/(2(√(3a−x))))=0⇒(√(3a−x))=(√(x−a))  ⇒x=2a   D_f =[a,3a]  f(a)=f(3a)=(√(2a))          f(2a)=2(√a)  f_(min) .f_(max) =(√(8a^2 ))=(√(32))   ⇒a=2  way 2:  f^2 =2a+2(√(4ax−x^2 −3a^2 ))  g(x)= (√(4ax−x^2 −3a^2 ))   { ((min=0)),((max=g(((−4a)/(−1×2)))=a)) :}  min f^2 ×max f^2 =2a×4a=((√(32)))^2 ⇒a=2
$$\frac{{df}}{{dx}}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}−{a}}}+\frac{−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}{a}−{x}}}=\mathrm{0}\Rightarrow\sqrt{\mathrm{3}{a}−{x}}=\sqrt{{x}−{a}} \\ $$$$\Rightarrow{x}=\mathrm{2}{a}\: \\ $$$${D}_{{f}} =\left[{a},\mathrm{3}{a}\right] \\ $$$${f}\left({a}\right)={f}\left(\mathrm{3}{a}\right)=\sqrt{\mathrm{2}{a}}\:\:\:\:\:\:\:\:\:\:{f}\left(\mathrm{2}{a}\right)=\mathrm{2}\sqrt{{a}} \\ $$$${f}_{{min}} .{f}_{{max}} =\sqrt{\mathrm{8}{a}^{\mathrm{2}} }=\sqrt{\mathrm{32}}\:\:\:\Rightarrow{a}=\mathrm{2} \\ $$$${way}\:\mathrm{2}: \\ $$$${f}^{\mathrm{2}} =\mathrm{2}{a}+\mathrm{2}\sqrt{\mathrm{4}{ax}−{x}^{\mathrm{2}} −\mathrm{3}{a}^{\mathrm{2}} } \\ $$$${g}\left({x}\right)=\:\sqrt{\mathrm{4}{ax}−{x}^{\mathrm{2}} −\mathrm{3}{a}^{\mathrm{2}} }\:\:\begin{cases}{{min}=\mathrm{0}}\\{{max}={g}\left(\frac{−\mathrm{4}{a}}{−\mathrm{1}×\mathrm{2}}\right)={a}}\end{cases} \\ $$$${min}\:{f}^{\mathrm{2}} ×{max}\:{f}^{\mathrm{2}} =\mathrm{2}{a}×\mathrm{4}{a}=\left(\sqrt{\mathrm{32}}\right)^{\mathrm{2}} \Rightarrow{a}=\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *