Menu Close

f-x-x-a-3a-x-with-a-gt-0-is-given-If-f-max-f-min-32-find-a-




Question Number 186265 by mnjuly1970 last updated on 02/Feb/23
     f(x)= (√( x −a))  + (√(3a −x))   with ( a>0)      is  given .If  ,  f_( max)  . f_( min)  = (√(32))       find  ,       ”   a  ”  = ?
f(x)=xa+3axwith(a>0)isgiven.If,fmax.fmin=32find,a=?
Answered by mahdipoor last updated on 02/Feb/23
(df/dx)=(1/(2(√(x−a))))+((−1)/(2(√(3a−x))))=0⇒(√(3a−x))=(√(x−a))  ⇒x=2a   D_f =[a,3a]  f(a)=f(3a)=(√(2a))          f(2a)=2(√a)  f_(min) .f_(max) =(√(8a^2 ))=(√(32))   ⇒a=2  way 2:  f^2 =2a+2(√(4ax−x^2 −3a^2 ))  g(x)= (√(4ax−x^2 −3a^2 ))   { ((min=0)),((max=g(((−4a)/(−1×2)))=a)) :}  min f^2 ×max f^2 =2a×4a=((√(32)))^2 ⇒a=2
dfdx=12xa+123ax=03ax=xax=2aDf=[a,3a]f(a)=f(3a)=2af(2a)=2afmin.fmax=8a2=32a=2way2:f2=2a+24axx23a2g(x)=4axx23a2{min=0max=g(4a1×2)=aminf2×maxf2=2a×4a=(32)2a=2

Leave a Reply

Your email address will not be published. Required fields are marked *