Menu Close

f-x-x-f-x-x-2-1-f-2-




Question Number 192084 by sciencestudentW last updated on 07/May/23
f(x)+x∙f(−x)=x^2 +1  f((√2))=?
$${f}\left({x}\right)+{x}\centerdot{f}\left(−{x}\right)={x}^{\mathrm{2}} +\mathrm{1} \\ $$$${f}\left(\sqrt{\mathrm{2}}\right)=? \\ $$
Answered by AST last updated on 07/May/23
x^2 +1=−(1−x)(1+x)+2=−(1+x−x(1+x))+2  =1−x+x(1+x)=f(x)+x∙f(−x)  ⇒f(x)=1−x⇒f((√2))=1−(√2)
$${x}^{\mathrm{2}} +\mathrm{1}=−\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+{x}\right)+\mathrm{2}=−\left(\mathrm{1}+{x}−{x}\left(\mathrm{1}+{x}\right)\right)+\mathrm{2} \\ $$$$=\mathrm{1}−{x}+{x}\left(\mathrm{1}+{x}\right)={f}\left({x}\right)+{x}\centerdot{f}\left(−{x}\right) \\ $$$$\Rightarrow{f}\left({x}\right)=\mathrm{1}−{x}\Rightarrow{f}\left(\sqrt{\mathrm{2}}\right)=\mathrm{1}−\sqrt{\mathrm{2}} \\ $$
Answered by York12 last updated on 07/May/23
f(x)+xf(−x)=x^2 +1 → xf(x)+x^2 f(−x)=x^3 +x →(I)  f(−x)−xf(x)=x^2 +1 →(II)  summing I and II  we get :  f(−x)=(((x^4 −1))/((x−1)(x^2 +1)))=x+1 → f(x)=1−x  ∴ f((√2))=(1−(√2)) → (That′s it)                                  {BY  YORK}
$${f}\left({x}\right)+{xf}\left(−{x}\right)={x}^{\mathrm{2}} +\mathrm{1}\:\rightarrow\:{xf}\left({x}\right)+{x}^{\mathrm{2}} {f}\left(−{x}\right)={x}^{\mathrm{3}} +{x}\:\rightarrow\left({I}\right) \\ $$$${f}\left(−{x}\right)−{xf}\left({x}\right)={x}^{\mathrm{2}} +\mathrm{1}\:\rightarrow\left({II}\right) \\ $$$${summing}\:{I}\:{and}\:{II} \\ $$$${we}\:{get}\:: \\ $$$${f}\left(−{x}\right)=\frac{\left({x}^{\mathrm{4}} −\mathrm{1}\right)}{\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{1}\right)}={x}+\mathrm{1}\:\rightarrow\:{f}\left({x}\right)=\mathrm{1}−{x} \\ $$$$\therefore\:{f}\left(\sqrt{\mathrm{2}}\right)=\left(\mathrm{1}−\sqrt{\mathrm{2}}\right)\:\rightarrow\:\left({That}'{s}\:{it}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left\{\mathscr{BY}\:\:{YORK}\right\} \\ $$$$ \\ $$
Answered by mehdee42 last updated on 07/May/23
x=(√2)→f((√2))+(√2)f(−(√2))=3   (i)  x=−(√2)→f(−(√2))−(√2)f((√(2)))=3   ⇒^(×−(√2)) − (√2)f(−(√2))+2f((√2))=−3(√2)  (ii)  (i)+(ii)→3f((√2))=3−3(√2)⇒f((√2))=1−(√2)  ✓
$${x}=\sqrt{\mathrm{2}}\rightarrow{f}\left(\sqrt{\mathrm{2}}\right)+\sqrt{\mathrm{2}}{f}\left(−\sqrt{\mathrm{2}}\right)=\mathrm{3}\:\:\:\left({i}\right) \\ $$$${x}=−\sqrt{\mathrm{2}}\rightarrow{f}\left(−\sqrt{\mathrm{2}}\right)−\sqrt{\mathrm{2}}{f}\left(\sqrt{\left.\mathrm{2}\right)}=\mathrm{3}\:\:\:\overset{×−\sqrt{\mathrm{2}}} {\Rightarrow}−\:\sqrt{\mathrm{2}}{f}\left(−\sqrt{\mathrm{2}}\right)+\mathrm{2}{f}\left(\sqrt{\mathrm{2}}\right)=−\mathrm{3}\sqrt{\mathrm{2}}\:\:\left({ii}\right)\right. \\ $$$$\left({i}\right)+\left({ii}\right)\rightarrow\mathrm{3}{f}\left(\sqrt{\mathrm{2}}\right)=\mathrm{3}−\mathrm{3}\sqrt{\mathrm{2}}\Rightarrow{f}\left(\sqrt{\mathrm{2}}\right)=\mathrm{1}−\sqrt{\mathrm{2}}\:\:\checkmark \\ $$
Answered by gatocomcirrose last updated on 08/May/23
f(x)=ax+b  ax+b−ax^2 +bx=x^2 +1  ⇒a=−1, b=1  f(x)=−x+1⇒f((√2))=1−(√2)
$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{ax}+\mathrm{b} \\ $$$$\mathrm{ax}+\mathrm{b}−\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}=\mathrm{x}^{\mathrm{2}} +\mathrm{1} \\ $$$$\Rightarrow\mathrm{a}=−\mathrm{1},\:\mathrm{b}=\mathrm{1} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=−\mathrm{x}+\mathrm{1}\Rightarrow\mathrm{f}\left(\sqrt{\mathrm{2}}\right)=\mathrm{1}−\sqrt{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *