Menu Close

f-x-x-ln-e-x-2-f-x-x-ln-e-x-2-x-ln2-f-x-x-ln-e-x-2-x-ln2-lim-x-f-x-lim-x-x-ln-e-x-2-lim-x-f-x-lim-x-x-ln-e-x-2-lim-x-




Question Number 130455 by ayoubbacmath0 last updated on 25/Jan/21
f(x)=x+ln∣e^x −2∣   { ((f(x)=x+ln(e^x −2)      x∈]ln2;+∞[)),((f(x)=x+ln(−e^x +2)   x∈]−∞;ln2[)) :}  lim_(x→+∞) f(x)=lim_(x→+∞) (x+ln(e^x −2))=+∞  lim_(x→−∞) f(x)=lim_(x→−∞) (x+ln(−e^x +2))=−∞  lim_(x→−∞) e^x =0  lim_(x→−∞) ln(−e^x +2)=ln2  lim_(x→−∞) (x+ln(−e^x +2)=−∞  lim_(x→^> ln2) f(x)=lim_(x→^> ln2) (x+ln(e^x −2))=−∞  lim_(x→^< ln2) f(x)=lim_(x→^< ln2) (x+ln(−e^x +2))=−∞
f(x)=x+lnex2{f(x)=x+ln(ex2)x]ln2;+[f(x)=x+ln(ex+2)x];ln2[limfx+(x)=limx+(x+ln(ex2))=+limfx(x)=limx(x+ln(ex+2))=limexx=0limlnx(ex+2)=ln2limx(x+ln(ex+2)=limfx>ln2(x)=limx>ln2(x+ln(ex2))=limfx<ln2(x)=limx<ln2(x+ln(ex+2))=

Leave a Reply

Your email address will not be published. Required fields are marked *