Menu Close

f-x-x-m-x-6-and-f-is-strictly-monoton-find-the-value-s-of-m-m-Z-




Question Number 165552 by mnjuly1970 last updated on 03/Feb/22
      f(x)= (( x +m)/(∣x∣ + 6))  and  f is   strictly  monoton .find the value(s)    of   m   .  m∈Z
f(x)=x+mx+6andfisstrictlymonoton.findthevalue(s)ofm.mZ
Answered by TheSupreme last updated on 03/Feb/22
f′(x)>0  ((∣x∣+m−sgn(x)(x+m))/((∣x∣+6)^2 ))=((∣x∣+m−∣x∣−sgn(x)m)/((∣x∣+6)^2 ))>0→m(1−sgn(x))>0  ∄m ∣ ∀x∈R: f(x) is strictly monoton    f(x) is monoton for m=0 → f(x)=sgn(x)
f(x)>0x+msgn(x)(x+m)(x+6)2=x+mxsgn(x)m(x+6)2>0m(1sgn(x))>0mxR:f(x)isstrictlymonotonf(x)ismonotonform=0f(x)=sgn(x)
Answered by mahdipoor last updated on 03/Feb/22
⇒f= { ((((x+m)/(x+6))  x>0)),((((x+m)/(6−x))  x≤0)) :} ⇒f^′ = { ((((6−m)/((x+6)^2 ))  x<0)),((((m+6)/((6−x)^2 ))  x≥0)) :}   { ((6−m<0 & m+6<0 ⇒ ∄)),((6−m>0 & m+6>0 ⇒ −6<m<6)) :}  m∈Z⇒m∈{−5,−4,...,4,5}
f={x+mx+6x>0x+m6xx0f={6m(x+6)2x<0m+6(6x)2x0{6m<0&m+6<06m>0&m+6>06<m<6mZm{5,4,,4,5}

Leave a Reply

Your email address will not be published. Required fields are marked *