Menu Close

f-x-x-n-e-nx-Determinate-f-n-x-




Question Number 166814 by mathocean1 last updated on 28/Feb/22
f(x)=x^n e^(−nx)   Determinate f^((n)) (x).
$${f}\left({x}\right)={x}^{{n}} {e}^{−{nx}} \\ $$$${Determinate}\:{f}^{\left({n}\right)} \left({x}\right). \\ $$
Answered by TheSupreme last updated on 28/Feb/22
f(x)=(xe^(−x) )^n =  f^n (x)=D^n (t^n )∣_(t=xe^(−x) ) D^n (xe^(−x) )  D^1 =(1−x)e^(−x)   D^2 =(−1−1+x)e^(−x) =(−2+x)e^(−x)   D^3 =(1+2−x)e^(−x) =(3−x)e^(−x)   D^n =(−1)^n (x−n)e^(−x)   f^k (x)=(−1)^n x^(n−k) e^(−(n−k)x) ((n!)/((n−k)!))(x−k)e^(−x)
$${f}\left({x}\right)=\left({xe}^{−{x}} \right)^{{n}} = \\ $$$${f}^{{n}} \left({x}\right)={D}^{{n}} \left({t}^{{n}} \right)\mid_{{t}={xe}^{−{x}} } {D}^{{n}} \left({xe}^{−{x}} \right) \\ $$$${D}^{\mathrm{1}} =\left(\mathrm{1}−{x}\right){e}^{−{x}} \\ $$$${D}^{\mathrm{2}} =\left(−\mathrm{1}−\mathrm{1}+{x}\right){e}^{−{x}} =\left(−\mathrm{2}+{x}\right){e}^{−{x}} \\ $$$${D}^{\mathrm{3}} =\left(\mathrm{1}+\mathrm{2}−{x}\right){e}^{−{x}} =\left(\mathrm{3}−{x}\right){e}^{−{x}} \\ $$$${D}^{{n}} =\left(−\mathrm{1}\right)^{{n}} \left({x}−{n}\right){e}^{−{x}} \\ $$$${f}^{{k}} \left({x}\right)=\left(−\mathrm{1}\right)^{{n}} {x}^{{n}−{k}} {e}^{−\left({n}−{k}\right){x}} \frac{{n}!}{\left({n}−{k}\right)!}\left({x}−{k}\right){e}^{−{x}} \\ $$
Answered by Mathspace last updated on 28/Feb/22
f^((p)) (x)=Σ_(k=0) ^p C_p ^k (x^n )^((k)) (e^(−nx) )^((p−k))   but (x^n )^((k)) =n(n−1)...)(  n−k+1)x^(n−k) =((n!)/((n−k)!))x^(n−k)   (e^(−nx) )^((p−k)) =(−n)^(p−k)  e^(−nx)  ⇒  f^((p)) (x)=Σ_(k=0) ^p  C_p ^k  ((n!)/((n−k)!))(−n)^(p−k) e^(−nx)   ⇒f^((n)) (x)=Σ_(k=0) ^n  C_n ^k  ((n!)/((n−k)!))(−n)^(n−k)  e^(−nx)
$${f}^{\left({p}\right)} \left({x}\right)=\sum_{{k}=\mathrm{0}} ^{{p}} {C}_{{p}} ^{{k}} \left({x}^{{n}} \right)^{\left({k}\right)} \left({e}^{−{nx}} \right)^{\left({p}−{k}\right)} \\ $$$$\left.{but}\:\left({x}^{{n}} \right)^{\left({k}\right)} ={n}\left({n}−\mathrm{1}\right)…\right)\left(\right. \\ $$$$\left.{n}−{k}+\mathrm{1}\right){x}^{{n}−{k}} =\frac{{n}!}{\left({n}−{k}\right)!}{x}^{{n}−{k}} \\ $$$$\left({e}^{−{nx}} \right)^{\left({p}−{k}\right)} =\left(−{n}\right)^{{p}−{k}} \:{e}^{−{nx}} \:\Rightarrow \\ $$$${f}^{\left({p}\right)} \left({x}\right)=\sum_{{k}=\mathrm{0}} ^{{p}} \:{C}_{{p}} ^{{k}} \:\frac{{n}!}{\left({n}−{k}\right)!}\left(−{n}\right)^{{p}−{k}} {e}^{−{nx}} \\ $$$$\Rightarrow{f}^{\left({n}\right)} \left({x}\right)=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\frac{{n}!}{\left({n}−{k}\right)!}\left(−{n}\right)^{{n}−{k}} \:{e}^{−{nx}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *