Menu Close

f-x-x-n-e-nx-Determinate-f-n-x-




Question Number 166814 by mathocean1 last updated on 28/Feb/22
f(x)=x^n e^(−nx)   Determinate f^((n)) (x).
f(x)=xnenxDeterminatef(n)(x).
Answered by TheSupreme last updated on 28/Feb/22
f(x)=(xe^(−x) )^n =  f^n (x)=D^n (t^n )∣_(t=xe^(−x) ) D^n (xe^(−x) )  D^1 =(1−x)e^(−x)   D^2 =(−1−1+x)e^(−x) =(−2+x)e^(−x)   D^3 =(1+2−x)e^(−x) =(3−x)e^(−x)   D^n =(−1)^n (x−n)e^(−x)   f^k (x)=(−1)^n x^(n−k) e^(−(n−k)x) ((n!)/((n−k)!))(x−k)e^(−x)
f(x)=(xex)n=fn(x)=Dn(tn)t=xexDn(xex)D1=(1x)exD2=(11+x)ex=(2+x)exD3=(1+2x)ex=(3x)exDn=(1)n(xn)exfk(x)=(1)nxnke(nk)xn!(nk)!(xk)ex
Answered by Mathspace last updated on 28/Feb/22
f^((p)) (x)=Σ_(k=0) ^p C_p ^k (x^n )^((k)) (e^(−nx) )^((p−k))   but (x^n )^((k)) =n(n−1)...)(  n−k+1)x^(n−k) =((n!)/((n−k)!))x^(n−k)   (e^(−nx) )^((p−k)) =(−n)^(p−k)  e^(−nx)  ⇒  f^((p)) (x)=Σ_(k=0) ^p  C_p ^k  ((n!)/((n−k)!))(−n)^(p−k) e^(−nx)   ⇒f^((n)) (x)=Σ_(k=0) ^n  C_n ^k  ((n!)/((n−k)!))(−n)^(n−k)  e^(−nx)
f(p)(x)=k=0pCpk(xn)(k)(enx)(pk)but(xn)(k)=n(n1))(nk+1)xnk=n!(nk)!xnk(enx)(pk)=(n)pkenxf(p)(x)=k=0pCpkn!(nk)!(n)pkenxf(n)(x)=k=0nCnkn!(nk)!(n)nkenx

Leave a Reply

Your email address will not be published. Required fields are marked *