Menu Close

f-x-x-n-e-x-1-calculate-f-n-0-and-f-n-1-2-developp-f-at-integr-serie-3-calculate-0-1-f-x-dx-




Question Number 147467 by mathmax by abdo last updated on 21/Jul/21
f(x)=x^n  e^(−x)   1) calculate f^((n)) (0) and f^((n)) (1)  2)developp f at integr serie  3) calculate ∫_0 ^1  f(x)dx
f(x)=xnex1)calculatef(n)(0)andf(n)(1)2)developpfatintegrserie3)calculate01f(x)dx
Answered by mathmax by abdo last updated on 22/Jul/21
1)leibniz give f^((p)) (x)=Σ_(k=0) ^p C_p ^k  (x^n )^((k)) (e^(−x) )^((p−k))  ⇒  =Σ_(k=0) ^p  C_p ^k (−1)^(p−k)  e^(−x) (x^n )^((k))   if k>n  ⇒(x^n )^((k))  =0  if k≤n     ⇒(x^n )^((k))  =n(n−1)...(n−k+1)x^(n−k)   =((n!)/((n−k)!))x^(n−k)   we have  f^((n)) (x)=Σ_(k=0) ^n  C_n ^k  (−1)^(n−k)  e^(−x) ×((n!)/((n−k)!))x^(n−k)   =Σ_(k=0) ^(n−1) (...)x^(n−k) +e^(−x) n! ⇒f^((n)) (0)=n!
1)leibnizgivef(p)(x)=k=0pCpk(xn)(k)(ex)(pk)=k=0pCpk(1)pkex(xn)(k)ifk>n(xn)(k)=0ifkn(xn)(k)=n(n1)(nk+1)xnk=n!(nk)!xnkwehavef(n)(x)=k=0nCnk(1)nkex×n!(nk)!xnk=k=0n1()xnk+exn!f(n)(0)=n!
Commented by mathmax by abdo last updated on 22/Jul/21
f^((n)) (1)=e^(−1)  Σ_(k=0) ^n  (−1)^(n−k)  ((n!)/(k!(n−k)!))×((n!)/((n−k)!))  =(−1)^n e^(−1)  Σ_(k=0) ^n  (((−1)^k )/(k!))×(((n!)^2 )/(((n−k)!)^2 ))
f(n)(1)=e1k=0n(1)nkn!k!(nk)!×n!(nk)!=(1)ne1k=0n(1)kk!×(n!)2((nk)!)2
Answered by mathmax by abdo last updated on 22/Jul/21
2) we have f(x)=x^n  e^(−x)  =x^n  Σ_(p=0) ^∞  (((−x)^p )/(p!))  =Σ_(p=0) ^∞  (((−1)^p )/(p!))x^(n+p)  =_(n+p=k)   Σ_(k=n) ^∞  (((−1)^(k−n) )/((k−n)!)) x^k
2)wehavef(x)=xnex=xnp=0(x)pp!=p=0(1)pp!xn+p=n+p=kk=n(1)kn(kn)!xk
Answered by mathmax by abdo last updated on 22/Jul/21
3) A_n =∫_0 ^1  x^n  e^(−x)  dx   by parts we get  A_n =[(x^(n+1) /(n+1))e^(−x) ]_0 ^1 +∫_0 ^1  (x^(n+1) /(n+1))e^(−x)  dx=(e^(−1) /(n+1)) +(1/(n+1)) A_(n+1)  ⇒  (n+1)A_n =(1/e) +A_(n+1)  ⇒A_(n+1) =(n+1)A_n −(1/e) ⇒  A_n =nA_(n−1) −(1/e)  let u_n =(A_n /(n!)) ⇒  u_(n+1) =(A_(n+1) /((n+1)!))=(((n+1)A_n −(1/e))/((n+1)!))=(A_n /(n!))−(1/(e(n+1)!))  =u_n −(1/(e(n+1)!)) ⇒u_(n+1) −u_n =−(1/(e(n+1)!)) ⇒  Σ_(k=0) ^n  (u_(k+1) −u_k )=−(1/e)Σ_(k=0) ^n  (1/((k+1)!)) ⇒  u_n −u_0 =−(1/e)Σ_(k=1) ^(n+1)  (1/(k!)) ⇒u_n =u_o −(1/e)Σ_(k=1) ^(n+1)  (1/(k!))  u_o =A_0 =∫_0 ^1  e^(−x)  dx=[−e^(−x) ]_0 ^1  =1−(1/e) ⇒  u_n =1−(1/e)Σ_(k=0) ^(n+1 )  (1/(k!))  A_n =n!u_n =n!(1−(1/e)Σ_(k=0) ^(n+1)  (1/(k!)))
3)An=01xnexdxbypartswegetAn=[xn+1n+1ex]01+01xn+1n+1exdx=e1n+1+1n+1An+1(n+1)An=1e+An+1An+1=(n+1)An1eAn=nAn11eletun=Ann!un+1=An+1(n+1)!=(n+1)An1e(n+1)!=Ann!1e(n+1)!=un1e(n+1)!un+1un=1e(n+1)!k=0n(uk+1uk)=1ek=0n1(k+1)!unu0=1ek=1n+11k!un=uo1ek=1n+11k!uo=A0=01exdx=[ex]01=11eun=11ek=0n+11k!An=n!un=n!(11ek=0n+11k!)

Leave a Reply

Your email address will not be published. Required fields are marked *