Menu Close

f-x-x-n-find-A-f-1-f-1-1-f-1-2-f-1-3-f-n-1-n-




Question Number 191582 by Matica last updated on 26/Apr/23
  f(x)=x^n  .  find      A=f(1)+((f^′ (1))/1)+((f^(′′) (1))/2)+((f^(′′′) (1))/3)+...+((f^((n)) (1))/n)
$$\:\:{f}\left({x}\right)={x}^{{n}} \:.\:\:{find}\: \\ $$$$\:\:\:{A}={f}\left(\mathrm{1}\right)+\frac{{f}^{'} \left(\mathrm{1}\right)}{\mathrm{1}}+\frac{{f}^{''} \left(\mathrm{1}\right)}{\mathrm{2}}+\frac{{f}^{'''} \left(\mathrm{1}\right)}{\mathrm{3}}+…+\frac{{f}^{\left({n}\right)} \left(\mathrm{1}\right)}{{n}} \\ $$
Answered by aleks041103 last updated on 27/Apr/23
f^((k)) (x)=(x^n )^((k)) = { ((((n!)/((n−k)!))x^(n−k) , k=0,1,...,n)),((0,k>n)) :}  ⇒A=1+Σ_(k=1) ^n  ((n!)/(k(n−k)!))
$${f}^{\left({k}\right)} \left({x}\right)=\left({x}^{{n}} \right)^{\left({k}\right)} =\begin{cases}{\frac{{n}!}{\left({n}−{k}\right)!}{x}^{{n}−{k}} ,\:{k}=\mathrm{0},\mathrm{1},…,{n}}\\{\mathrm{0},{k}>{n}}\end{cases} \\ $$$$\Rightarrow{A}=\mathrm{1}+\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{{n}!}{{k}\left({n}−{k}\right)!} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *