Menu Close

f-x-x-x-1-f-1-




Question Number 122393 by benjo_mathlover last updated on 16/Nov/20
  f(x) = x ∣x−1∣ ⇒f ′(1)=?
$$\:\:{f}\left({x}\right)\:=\:{x}\:\mid{x}−\mathrm{1}\mid\:\Rightarrow{f}\:'\left(\mathrm{1}\right)=? \\ $$
Answered by MJS_new last updated on 16/Nov/20
does not exist
$$\mathrm{does}\:\mathrm{not}\:\mathrm{exist} \\ $$
Answered by Bird last updated on 17/Nov/20
lim_(h→0^+ )   ((f(1+h)−f(1))/h)  =lim_(h→o^+ )    (((1+h)h)/h) =lim_(h→0^+ )  1+h=1  lim_(h→0^− )    ((f(1+h)−f(1))/h)  =lim_(h→0^− ) (((1+h)(−h))/h)=lim_(h→0^− ) −(1+h)  =−1 its clear thst f is not derivable  at 1 ⇒f^′ (1) dont  exist
$${lim}_{{h}\rightarrow\mathrm{0}^{+} } \:\:\frac{{f}\left(\mathrm{1}+{h}\right)−{f}\left(\mathrm{1}\right)}{{h}} \\ $$$$={lim}_{{h}\rightarrow{o}^{+} } \:\:\:\frac{\left(\mathrm{1}+{h}\right){h}}{{h}}\:={lim}_{{h}\rightarrow\mathrm{0}^{+} } \:\mathrm{1}+{h}=\mathrm{1} \\ $$$${lim}_{{h}\rightarrow\mathrm{0}^{−} } \:\:\:\frac{{f}\left(\mathrm{1}+{h}\right)−{f}\left(\mathrm{1}\right)}{{h}} \\ $$$$={lim}_{{h}\rightarrow\mathrm{0}^{−} } \frac{\left(\mathrm{1}+{h}\right)\left(−{h}\right)}{{h}}={lim}_{{h}\rightarrow\mathrm{0}^{−} } −\left(\mathrm{1}+{h}\right) \\ $$$$=−\mathrm{1}\:{its}\:{clear}\:{thst}\:{f}\:{is}\:{not}\:{derivable} \\ $$$${at}\:\mathrm{1}\:\Rightarrow{f}^{'} \left(\mathrm{1}\right)\:{dont}\:\:{exist} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *