Menu Close

f-x-x-x-x-x-x-f-5-




Question Number 98398 by bemath last updated on 13/Jun/20
f(x) = (√(x+(√(x+(√(x+(√(x+(√(x+...))))))))))  f ′(5) =
f(x)=x+x+x+x+x+f(5)=
Commented by bobhans last updated on 14/Jun/20
let y =(√(x+(√(x+(√(x+(√(x+(√(...))))))))))  defined for  { ((x≥0)),((y≥0)) :}  so y^2 = x+y ; y^2 −y−x=0  y = ((1 + (√(1+4x)))/2) ⇒y′(x)= ((4/(2(√(1+4x))))/2) = (1/( (√(1+4x))))  y′(5)=(1/( (√(21)))) ■
lety=x+x+x+x+definedfor{x0y0soy2=x+y;y2yx=0y=1+1+4x2y(x)=421+4x2=11+4xy(5)=121◼
Commented by mr W last updated on 14/Jun/20
absolutely correct sir!  even without knowledge about calculus  it′s easy to see:  y(5)=(√(5+(√(5+(√(5+(√(...))))))))>(√5)>0  y(6)=(√(6+(√(6+(√(6+(√(...))))))))>(√(5+(√(5+(√(5+(√(...))))))))  ((y(6)−y(5))/(6−5))>0 ⇒y′(5)>0
absolutelycorrectsir!evenwithoutknowledgeaboutcalculusitseasytosee:y(5)=5+5+5+>5>0y(6)=6+6+6+>5+5+5+y(6)y(5)65>0y(5)>0
Answered by smridha last updated on 13/Jun/20
let f(x)=y  so y^2 =x+y....(i)  diff wrt x we get  2y(dy/dx)=1+(dy/dx),so y^′ =(1/(2y−1))...(ii)  from (i) we get:y=((1+_− (√(1+4x)))/2)  so if x=5 then:y=((1+_− (√(21)))/2).  now from (ii):  y^′ (5)=+_− (1/( (√(21))))
letf(x)=ysoy2=x+y.(i)diffwrtxweget2ydydx=1+dydx,soy=12y1(ii)from(i)weget:y=1+1+4x2soifx=5then:y=1+212.nowfrom(ii):y(5)=+121
Commented by bemath last updated on 13/Jun/20
yeahhh...
yeahhh
Answered by abdomathmax last updated on 13/Jun/20
f^2 (x)=x+f(x) ⇒f^2 (x)−f(x)−x=0  with f≥0 and x≥0  Δ =1+4x ⇒f(x) =((1+(√(1+4x)))/2) or f(x)=((1−(√(1+4x)))/2)  ⇒f(x) =((1+(√(1+4x)))/2) ⇒f^′ (x)=(1/2)×(4/(2(√(1+4x))))  =(1/( (√(1+4x)))) ⇒f^′ (5) =(1/( (√(21))))
f2(x)=x+f(x)f2(x)f(x)x=0withf0andx0Δ=1+4xf(x)=1+1+4x2orf(x)=11+4x2f(x)=1+1+4x2f(x)=12×421+4x=11+4xf(5)=121
Commented by mr W last updated on 13/Jun/20
i think x>0, y>0  so there is only one possibility  f(x)=((1+(√(1+4x)))/2)  f ′(5)=(1/( (√(21))))
ithinkx>0,y>0sothereisonlyonepossibilityf(x)=1+1+4x2f(5)=121
Commented by mathmax by abdo last updated on 13/Jun/20
its clear thst f must be ≥0 from its form f(x)=(√(x+(√(...))))
itsclearthstfmustbe0fromitsformf(x)=x+
Answered by smridha last updated on 13/Jun/20
let f(x)=−y  so y^2 =x−y  so y^′ =(1/(2y+1))  now y=((−1+_− (√(1+4x)))/2)  put x=5 we get y=((−1+_− (√(21)))/2)  so y^′ (5)=+_− (1/( (√(21))))  so there is two possible ans  which are +_− (1/( (√(21))))    so y^′ (5)=+_− (1/( (√(21)))) are 100% perfect.
letf(x)=ysoy2=xysoy=12y+1nowy=1+1+4x2putx=5wegety=1+212soy(5)=+121sothereistwopossibleanswhichare+121soy(5)=+121are100%perfect.
Answered by smridha last updated on 14/Jun/20
ohh then if x^2 =4 then   x=(√4) and x has only one value  that is+ 2 wow that great very funny  what is the meaning of square  root...I think it is new invension  that^2 (√(  ))   means only +.  x is under square root so we  cannot considered only possitive  value...it is very childish comment  i ever read...  at first know the meaning of  square root...  (√5) >0 when we consider and  take the possitive value  of (√5) not the negetive value  (√5)≈+_− 2.236 so +2.236>0   −2.236<0.  so f(x)=+_− y not only +y or −y  so the genrel silution is  y^′ (5)=+_− (1/( (√(21)))) always be perfect.
ohhthenifx2=4thenx=4andxhasonlyonevaluethatis+2wowthatgreatveryfunnywhatisthemeaningofsquarerootIthinkitisnewinvensionthat2meansonly+.xisundersquarerootsowecannotconsideredonlypossitivevalueitisverychildishcommentieverreadatfirstknowthemeaningofsquareroot5>0whenweconsiderandtakethepossitivevalueof5notthenegetivevalue5+2.236so+2.236>02.236<0.sof(x)=+ynotonly+yorysothegenrelsilutionisy(5)=+121alwaysbeperfect.
Commented by bobhans last updated on 14/Jun/20
if x^2 =4 ⇔(x−2)(x+2)=0  so x = ± 2 ,  but  if x = (√4) = 2  not x = (√4) = ± 2 .
ifx2=4(x2)(x+2)=0sox=±2,butifx=4=2notx=4=±2.
Commented by smridha last updated on 14/Jun/20
well (√4)=(√(i^4 4))=i^2 .2=−2 it is also  correct .i^4 =1  so (√(i^(4n+4) x))=i^(2n+2) (√x)  where n=0 ,1,2,3.....  and it gives us +(√x) for n=odd  and −(√(x )) for n=even  this is our convention that  (√4) cosidered as +2 but ingeneral  that′s not true (√4)=+_− 2.  it just depend on physical  setuation and which value we  wanted to take..but that does  not mean there is no negetive  value.  remember f(x)=y for solving  this we squaring both sides.
well4=i44=i2.2=2itisalsocorrect.i4=1soi4n+4x=i2n+2xwheren=0,1,2,3..anditgivesus+xforn=oddandxforn=eventhisisourconventionthat4cosideredas+2butingeneralthatsnottrue4=+2.itjustdependonphysicalsetuationandwhichvaluewewantedtotake..butthatdoesnotmeanthereisnonegetivevalue.rememberf(x)=yforsolvingthiswesquaringbothsides.

Leave a Reply

Your email address will not be published. Required fields are marked *