Menu Close

f-x-y-e-1-r-2-1-if-r-lt-1-where-r-x-y-0-if-r-1-show-that-f-x-y-is-continuous-in-R-2-




Question Number 176652 by floor(10²Eta[1]) last updated on 24/Sep/22
f(x,y)= { ((e^(1/(r^2 −1))  if r<1, where r=∥(x,y)∥)),((0 if r≥1)) :}  show that f(x,y) is continuous in R^2
$$\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\begin{cases}{\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{r}^{\mathrm{2}} −\mathrm{1}}} \:\mathrm{if}\:\mathrm{r}<\mathrm{1},\:\mathrm{where}\:\mathrm{r}=\parallel\left(\mathrm{x},\mathrm{y}\right)\parallel}\\{\mathrm{0}\:\mathrm{if}\:\mathrm{r}\geqslant\mathrm{1}}\end{cases} \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{is}\:\mathrm{continuous}\:\mathrm{in}\:\mathbb{R}^{\mathrm{2}} \\ $$
Answered by floor(10²Eta[1]) last updated on 24/Sep/22
recall that ∥(x,y)∥=(√(x^2 +y^2 ))
$$\mathrm{recall}\:\mathrm{that}\:\parallel\left(\mathrm{x},\mathrm{y}\right)\parallel=\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *