Menu Close

f-x-y-f-x-f-y-x-R-f-1-8-f-2-3-




Question Number 118118 by naka3546 last updated on 15/Oct/20
f(x+y) = f(x) f(y)   ∀x ∈ R  f(1) = 8  f((2/3)) = ?
f(x+y)=f(x)f(y)xRf(1)=8f(23)=?
Answered by mr W last updated on 15/Oct/20
f(x)=a^x   f(1)=a^1 =8 ⇒a=8  f(x)=8^x   f((2/3))=8^(2/3) =4
f(x)=axf(1)=a1=8a=8f(x)=8xf(23)=823=4
Commented by bemath last updated on 15/Oct/20
sir, how do you claim that f(x)=a^x  ?
sir,howdoyouclaimthatf(x)=ax?
Commented by MJS_new last updated on 15/Oct/20
a^(x+y) =a^x a^y
ax+y=axay
Commented by bemath last updated on 15/Oct/20
okay prof thank you
okayprofthankyou
Answered by mindispower last updated on 15/Oct/20
f((2/3))=f((1/3))^2   f((2/3)+(1/3))=f(1)=f((2/3)).f((1/3))=f((1/3))^3 =8⇒f((1/3))=2  f((2/3))=2^2 =4
f(23)=f(13)2f(23+13)=f(1)=f(23).f(13)=f(13)3=8f(13)=2f(23)=22=4
Answered by aleks041103 last updated on 15/Oct/20
f(x+y)=f(x)f(y)  ln(f(x+y))=ln(f(x)f(y))  ln(f(x+y))=ln(f(x)) + ln(f(y))  g(x)=ln(f(x))  ⇒g(x+y)=g(x)+g(y)  let y=0 ⇒ g(x)=g(x)+g(0)⇒g(0)=0  g(Σ_(i=1) ^n x_i )=g(x_n +Σ_(i=1) ^(n−1) x_i )=g(x_n )+g(Σ_(i=1) ^(n−1) x_i )  by induction  g(Σ_(i=1) ^n x_i )=Σ_(i=1) ^n g(x_i )  if x_i =x  g(nx)=ng(x), n is integer  ln(f(nx))=n ln(f(x))=ln((f(x))^n )  ⇒f(nx)=(f(x))^n   ⇒f(3×(1/3))=(f((1/3)))^3 = 8  ⇒f(1/3)=8^(1/3)   f(2×(1/3))=(f((1/3)))^2 =8^(2/3)   ⇒f((2/3))=4 1^(2/3) =4(e^(2kπi) )^(2/3)   ⇒f((2/3))=4exp(((4k)/3)πi)=4cos(240°k)+4sin(240°k)i  ⇒f(2/3)=4;−2+2(√3)i;−2−2(√3)i
f(x+y)=f(x)f(y)ln(f(x+y))=ln(f(x)f(y))ln(f(x+y))=ln(f(x))+ln(f(y))g(x)=ln(f(x))g(x+y)=g(x)+g(y)lety=0g(x)=g(x)+g(0)g(0)=0g(ni=1xi)=g(xn+n1i=1xi)=g(xn)+g(n1i=1xi)byinductiong(ni=1xi)=ni=1g(xi)ifxi=xg(nx)=ng(x),nisintegerln(f(nx))=nln(f(x))=ln((f(x))n)f(nx)=(f(x))nf(3×13)=(f(13))3=8f(1/3)=81/3f(2×13)=(f(13))2=82/3f(23)=412/3=4(e2kπi)2/3f(23)=4exp(4k3πi)=4cos(240°k)+4sin(240°k)if(2/3)=4;2+23i;223i

Leave a Reply

Your email address will not be published. Required fields are marked *