Menu Close

f-x-y-f-x-f-y-x-y-f-4-10-finde-f-2022-




Question Number 190704 by mathlove last updated on 09/Apr/23
f(x+y)=f(x)+f(y)+x∙y  f(4)=10  finde f(2022)=?
f(x+y)=f(x)+f(y)+xyf(4)=10findef(2022)=?
Answered by mahdipoor last updated on 09/Apr/23
f(n+1)=[f(n)]+f(1)+n=  [f(n−1)+f(1)+(n−1)]+f(1)+n=...  =(n+1)f(1)+((n(n+1))/2)  ⇒f(4)=4f(1)+((3×4)/2)=10⇒f(1)=1  f(2022)=2022f(1)+((2021×2022)/2)=1011×2023
f(n+1)=[f(n)]+f(1)+n=[f(n1)+f(1)+(n1)]+f(1)+n==(n+1)f(1)+n(n+1)2f(4)=4f(1)+3×42=10f(1)=1f(2022)=2022f(1)+2021×20222=1011×2023

Leave a Reply

Your email address will not be published. Required fields are marked *