Menu Close

f-x-y-f-x-f-y-xy-for-all-x-and-y-fromR-and-f-4-10-calculate-f-1319-




Question Number 145516 by mathmax by abdo last updated on 05/Jul/21
f(x+y)=f(x)+f(y)+xy for all x and y fromR  and f(4)=10  calculate f(1319)
f(x+y)=f(x)+f(y)+xyforallxandyfromRandf(4)=10calculatef(1319)
Answered by Olaf_Thorendsen last updated on 05/Jul/21
f(x+y) = f(x)+f(y)+xy  if x = y = 2  f(4) = 2f(2)+4 ⇒ f(2) = ((10−4)/2) = 3    if x = y = 1  f(2) = 2f(1)+1 ⇒ f(1) = ((3−1)/2) = 1    if x = y = 2^(n−1)   f(2^n ) = 2f(2^(n−1) )+2^(2n−2)   f(2^n ) = 2(2f(2^(n−2) )+2^(2n−4) )+2^(2n−2)   f(2^n ) = 2^2 f(2^(n−2) )+2^(2n−2) +2^(2n−3)   ...  f(2^n ) = 2^(n−2) f(2^2 )+Σ_(k=2) ^(n−1) 2^(2n−k)   f(2^n ) = 10.2^(n−2) +2^(2n) Σ_(k=2) ^(n−1) ((1/2))^k   f(2^n ) = 10.2^(n−2) +2^(2n) ×(1/4).((1−((1/2))^(n−2) )/(1−(1/2)))  f(2^n ) = 10.2^(n−2) +2^(2n) ((1−((1/2))^(n−2) )/2)  f(2^n ) = 10.2^(n−2) +2^(2n−1) −2^(n+1)     1319 = 1024+256+32+4+2+1  1319 = 2^(10) +2^8 +2^5 +4+2+1  f(1024) = 10.2^8 +2^(19) −2^(11)  = 524800  f(256) = 10.2^6 +2^(15) −2^9  = 32896  f(32) = 10.2^3 +2^9 −2^6  = 528    f(1024+256) = f(1280) = f(1024)+f(256)+1024×256  f(1280) = 819840  f(1280+32) = f(1312) = f(1280)+f(32)+1280×32  f(1312) = 861328  f(1312+4) = f(1316) = f(1312)+f(4)+1312×4  f(1316) = 866586  f(1316+2) = f(1318) = f(1316)+f(2)+1316×2  f(1318) = 869221  f(1318+1) = f(1319) = f(1318)+f(1)+1318×1  f(1319) = 870540
f(x+y)=f(x)+f(y)+xyifx=y=2f(4)=2f(2)+4f(2)=1042=3ifx=y=1f(2)=2f(1)+1f(1)=312=1ifx=y=2n1f(2n)=2f(2n1)+22n2f(2n)=2(2f(2n2)+22n4)+22n2f(2n)=22f(2n2)+22n2+22n3f(2n)=2n2f(22)+n1k=222nkf(2n)=10.2n2+22nn1k=2(12)kf(2n)=10.2n2+22n×14.1(12)n2112f(2n)=10.2n2+22n1(12)n22f(2n)=10.2n2+22n12n+11319=1024+256+32+4+2+11319=210+28+25+4+2+1f(1024)=10.28+219211=524800f(256)=10.26+21529=32896f(32)=10.23+2926=528f(1024+256)=f(1280)=f(1024)+f(256)+1024×256f(1280)=819840f(1280+32)=f(1312)=f(1280)+f(32)+1280×32f(1312)=861328f(1312+4)=f(1316)=f(1312)+f(4)+1312×4f(1316)=866586f(1316+2)=f(1318)=f(1316)+f(2)+1316×2f(1318)=869221f(1318+1)=f(1319)=f(1318)+f(1)+1318×1f(1319)=870540
Commented by mathmax by abdo last updated on 05/Jul/21
thanks sir olaf
thankssirolaf
Answered by mathmax by abdo last updated on 05/Jul/21
we have f(2+2)=f(2)+f(2)+4⇒f(4)=2f(2)+4 ⇒2f(2)=10−4=6  ⇒f(2)=3  f(2+1)=f(2)+f(1)+2 =5+f(1)=f(3)  f(1+1)=2f(1)+1 ⇒2f(1)=f(2)−f(1)=2 ⇒f(1)=1 ⇒f(3)=6  we have f(1)=1 ,f(2)=3=((2(2+1))/2) ,f(3)=6=((3(3+1))/2)  let suppose f(n)=((n(n+1))/2) ⇒f(n+1)=f(n)+f(1)+n  =((n(n+1))/2) +1+n =(n+1)((n/2)+1) =(((n+1)(n+2))/2) ⇒  ∀n ∈N^★     f(n)=((n(n+1))/2) ⇒  f(1319)=(1/2)(1319)×(1320) =660×1319=66×13190=...
wehavef(2+2)=f(2)+f(2)+4f(4)=2f(2)+42f(2)=104=6f(2)=3f(2+1)=f(2)+f(1)+2=5+f(1)=f(3)f(1+1)=2f(1)+12f(1)=f(2)f(1)=2f(1)=1f(3)=6wehavef(1)=1,f(2)=3=2(2+1)2,f(3)=6=3(3+1)2letsupposef(n)=n(n+1)2f(n+1)=f(n)+f(1)+n=n(n+1)2+1+n=(n+1)(n2+1)=(n+1)(n+2)2nNf(n)=n(n+1)2f(1319)=12(1319)×(1320)=660×1319=66×13190=

Leave a Reply

Your email address will not be published. Required fields are marked *