Menu Close

f-x-y-x-2-y-2-x-2-y-4-lim-x-lim-y-0-f-x-y-lim-y-lim-x-f-x-y-




Question Number 182649 by amin96 last updated on 12/Dec/22
f(x;y)=((x^2 +y^2 )/(x^2 +y^4 ))       lim_(x→∞) (lim_(y→0) f(x;y))=?  lim_(y→∞) (lim_(x→∞) f(x;y))=?
$$\boldsymbol{{f}}\left(\boldsymbol{{x}};\boldsymbol{{y}}\right)=\frac{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} }{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{4}} }\:\:\:\:\: \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\underset{{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\boldsymbol{{f}}\left(\boldsymbol{{x}};\boldsymbol{{y}}\right)\right)=? \\ $$$$\underset{\boldsymbol{{y}}\rightarrow\infty} {\mathrm{lim}}\left(\underset{{x}\rightarrow\infty} {\mathrm{lim}}\boldsymbol{{f}}\left(\boldsymbol{{x}};\boldsymbol{{y}}\right)\right)=? \\ $$
Answered by FelipeLz last updated on 12/Dec/22
lim_(x→∞) (lim_(y→0) ((x^2 +y^2 )/(x^2 +y^4 ))) = lim_(x→∞) (x^2 /x^2 ) = lim_(x→∞) 1 = 1  lim_(y→∞) (lim_(x→∞) ((x^2 +y^2 )/(x^2 +y^4 ))) = lim_(y→∞) (lim_(x→∞) (((x^2 +y^2 )x^(−2) )/((x^2 +y^4 )x^(−2) ))) = lim_(y→∞) (lim_(x→∞) ((1+y^2 x^(−2) )/(1+y^4 x^(−2) ))) = lim_(y→∞) ((1/1)) = 1
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\underset{{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{4}} }\right)\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}1}\:=\:\mathrm{1} \\ $$$$\underset{{y}\rightarrow\infty} {\mathrm{lim}}\left(\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{4}} }\right)\:=\:\underset{{y}\rightarrow\infty} {\mathrm{lim}}\left(\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){x}^{−\mathrm{2}} }{\left({x}^{\mathrm{2}} +{y}^{\mathrm{4}} \right){x}^{−\mathrm{2}} }\right)\:=\:\underset{{y}\rightarrow\infty} {\mathrm{lim}}\left(\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}+{y}^{\mathrm{2}} {x}^{−\mathrm{2}} }{\mathrm{1}+{y}^{\mathrm{4}} {x}^{−\mathrm{2}} }\right)\:=\:\underset{{y}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{1}}{\mathrm{1}}\right)\:=\:\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *