Menu Close

f-x-y-z-3x-2-y-x-3-y-3-2z-prove-that-the-function-has-a-potential-to-be-determined-




Question Number 168979 by MikeH last updated on 22/Apr/22
f(x,y,z) = (3x^2 y,x^3 +y^3 , 2z)  prove that the function has a potential  to be determined.
$${f}\left({x},{y},{z}\right)\:=\:\left(\mathrm{3}{x}^{\mathrm{2}} {y},{x}^{\mathrm{3}} +{y}^{\mathrm{3}} ,\:\mathrm{2}{z}\right) \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{function}\:\mathrm{has}\:\mathrm{a}\:\mathrm{potential} \\ $$$$\mathrm{to}\:\mathrm{be}\:\mathrm{determined}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *