Menu Close

f-x-y-z-x-p-z-y-p-z-4x-3-p-z-4y-3-p-z-4-x-y-2-y-x-p-x-y-c-x-y-1-x-y-2-x-2-y-2-Determine-x-y-z-such-that-f-is-maximum-c-is-a-const




Question Number 63015 by ajfour last updated on 27/Jun/19
f(x,y,z)= x(p+z)+y(p−z)      +((4x^3 )/(p+z))+((4y^3 )/(p−z))+4(x+y)^2 (y−x)  ∀  p(x,y)=c+(x−y)(√(1+(x+y)^2 ))                           +(x^2 −y^2 )  Determine x,y,z such that f is  maximum. (c is a constant).  Assume y≥x.
$${f}\left({x},{y},{z}\right)=\:{x}\left({p}+{z}\right)+{y}\left({p}−{z}\right) \\ $$$$\:\:\:\:+\frac{\mathrm{4}{x}^{\mathrm{3}} }{{p}+{z}}+\frac{\mathrm{4}{y}^{\mathrm{3}} }{{p}−{z}}+\mathrm{4}\left({x}+{y}\right)^{\mathrm{2}} \left({y}−{x}\right) \\ $$$$\forall\:\:{p}\left({x},{y}\right)={c}+\left({x}−{y}\right)\sqrt{\mathrm{1}+\left({x}+{y}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right) \\ $$$${Determine}\:{x},{y},{z}\:{such}\:{that}\:{f}\:{is} \\ $$$${maximum}.\:\left({c}\:{is}\:{a}\:{constant}\right). \\ $$$${Assume}\:{y}\geqslant{x}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *