Menu Close

f-x-y-z-z-2-yz-3-A-xzi-y-2-j-2x-2-yk-div-fA-curl-fA-




Question Number 124321 by sogol last updated on 02/Dec/20
f(x,y,z)=z^2 yz^3   A=xzi−y^2 j+2x^2 yk  div(fA)=?  curl(fA)=?
$${f}\left({x},{y},{z}\right)={z}^{\mathrm{2}} {yz}^{\mathrm{3}} \\ $$$${A}={xzi}−{y}^{\mathrm{2}} {j}+\mathrm{2}{x}^{\mathrm{2}} {yk} \\ $$$${div}\left({fA}\right)=? \\ $$$${curl}\left({fA}\right)=? \\ $$
Answered by Ar Brandon last updated on 02/Dec/20
div(A)=z−2y  gradf=2xyz^3 i+x^2 z^3 j+3x^2 yz^2 k  div(fA)=fdiv(A)+Agradf
$$\mathrm{div}\left(\mathrm{A}\right)=\mathrm{z}−\mathrm{2y} \\ $$$$\mathrm{gradf}=\mathrm{2xyz}^{\mathrm{3}} \mathrm{i}+\mathrm{x}^{\mathrm{2}} \mathrm{z}^{\mathrm{3}} \mathrm{j}+\mathrm{3x}^{\mathrm{2}} \mathrm{yz}^{\mathrm{2}} \mathrm{k} \\ $$$$\mathrm{div}\left(\mathrm{fA}\right)=\mathrm{fdiv}\left(\mathrm{A}\right)+\mathrm{Agradf} \\ $$
Answered by Dwaipayan Shikari last updated on 02/Dec/20
Divergence ▽.f(x,y,z) =(∂f/∂x)i^� +(∂f/∂y)j^� +(∂f/∂z)k^�^�    ▽.A=zi^� −2yj^�   ▽.f=z^5 j^� +5z^4 yk^�
$${Divergence}\:\bigtriangledown.{f}\left({x},{y},{z}\right)\:=\frac{\partial{f}}{\partial{x}}\hat {{i}}+\frac{\partial{f}}{\partial{y}}\hat {{j}}+\frac{\partial{f}}{\partial{z}}\hat {{k}} \\ $$$$\bigtriangledown.{A}={z}\hat {{i}}−\mathrm{2}{y}\hat {{j}} \\ $$$$\bigtriangledown.{f}={z}^{\mathrm{5}} \hat {{j}}+\mathrm{5}{z}^{\mathrm{4}} {y}\hat {{k}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *