Menu Close

f-z-cosz-1-sin-z-2-find-residus-of-f-




Question Number 148213 by mathmax by abdo last updated on 26/Jul/21
f(z)=((cosz)/(1−sin(z^2 )))  find residus of f
f(z)=cosz1sin(z2)findresidusoff
Answered by puissant last updated on 26/Jul/21
sin(z^2 )∽z^2 −(z^6 /6) ⇒ −sin(z^2 )∽−z^2 +(z^6 /6)  ⇒ 1−sin(z^2 )∽1−z^2 +(z^6 /6) ∽z^7 ((1/z^7 )−(1/z^5 )+(1/(6z)))  ⇒ f(z)∽((cos(z))/(z^7 ((1/z^7 )−(1/z^5 )+(1/(6z)))))  or cos(z)=Σ_(n=0) ^∞ (((−1)^n )/((2n)!))z^(2n)    ∽1−(z^2 /(2!))+(z^4 /(4!))−(z^6 /(6!))+(z^8 /(8!))...  ⇒f(z)∽(1/z^7 )(1−(z^2 /2)+(z^4 /(4!))−(z^6 /(6!))+(z^8 /(8!)))×(1/(((1/z^7 )−(1/z^5 )+(1/(6z)))))  ⇒ f(z)∽((1/z^7 )−(1/(2!z^5 ))+(1/(4!z^3 ))−(1/(6!z)))×(1/(((1/z^7 )−(1/z^5 )+(1/(6z)))))      Res(f)=−(1/(6!))×6=−(1/(120))...
sin(z2)z2z66sin(z2)z2+z661sin(z2)1z2+z66z7(1z71z5+16z)f(z)cos(z)z7(1z71z5+16z)orcos(z)=n=0(1)n(2n)!z2n1z22!+z44!z66!+z88!f(z)1z7(1z22+z44!z66!+z88!)×1(1z71z5+16z)f(z)(1z712!z5+14!z316!z)×1(1z71z5+16z)Res(f)=16!×6=1120

Leave a Reply

Your email address will not be published. Required fields are marked *