Menu Close

factor-the-expression-E-x-5-x-4-1-




Question Number 50924 by Saorey last updated on 22/Dec/18
factor the expression:  E=x^5 +x^4 +1
$$\mathrm{factor}\:\mathrm{the}\:\mathrm{expression}: \\ $$$$\mathrm{E}={x}^{\mathrm{5}} +{x}^{\mathrm{4}} +\mathrm{1} \\ $$
Answered by math1967 last updated on 22/Dec/18
x^5 −x^2 +x^4 +x^2 +1  =x^2 (x^3 −1)+{(x^2 +1)^2 −2x^2 +x^2 }  =x^2 (x−1)(x^2 +x+1)+(x^2 +1)^2 −x^2   =x^2 (x−1)(x^2 +x+1)+(x^2 +x+1)(x^2 −x+1)  =(x^2 +x+1)(x^3 −x^2 +x^2 −x+1)  =(x^2 +x+1)(x^3 −x+1)  ans
$${x}^{\mathrm{5}} −{x}^{\mathrm{2}} +{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1} \\ $$$$={x}^{\mathrm{2}} \left({x}^{\mathrm{3}} −\mathrm{1}\right)+\left\{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −\mathrm{2}{x}^{\mathrm{2}} +{x}^{\mathrm{2}} \right\} \\ $$$$={x}^{\mathrm{2}} \left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)+\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −{x}^{\mathrm{2}} \\ $$$$={x}^{\mathrm{2}} \left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)+\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right) \\ $$$$=\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)\left({x}^{\mathrm{3}} −{x}^{\mathrm{2}} +{x}^{\mathrm{2}} −{x}+\mathrm{1}\right) \\ $$$$=\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)\left({x}^{\mathrm{3}} −{x}+\mathrm{1}\right)\:\:{ans} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *